Simple Token-Level Confidence Improves Caption Correctness

preview_player
Показать описание
Authors: Suzanne Petryk; Spencer Whitehead; Joseph E. Gonzalez; Trevor Darrell; Anna Rohrbach; Marcus Rohrbach
Description: The ability to judge whether a caption correctly describes an image is a critical part of vision-language understanding. However, state-of-the-art models often misinterpret the correctness of fine-grained details, leading to errors in outputs such as hallucinating objects in generated captions or poor compositional reasoning. In this work, we explore Token-Level Confidence, or TLC, as a simple yet surprisingly effective method to assess caption correctness. Specifically, we fine-tune a vision-language model on image captioning, input an image and proposed caption to the model, and aggregate either algebraic or learned token confidences over words or sequences to estimate image-caption consistency. Compared to sequence-level scores from pretrained models, TLC with algebraic confidence more than doubles image and group scores for compositional reasoning on Winoground. When training data are available, a learned confidence estimator provides further improved performance, reducing object hallucination rates in MS COCO Captions by a relative 30% over the original model and setting a new state-of-the-art.
Рекомендации по теме
join shbcf.ru