filmov
tv
Tsirelson space | Wikipedia audio article
Показать описание
This is an audio version of the Wikipedia Article:
00:01:39 1 Tsirelson's construction
00:04:42 2 Properties
00:06:22 3 Derived spaces
00:06:53 4 See also
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
Other Wikipedia audio articles at:
Upload your own Wikipedia articles through:
Speaking Rate: 0.9984390555619849
Voice name: en-US-Wavenet-D
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
In mathematics, especially in functional analysis, the Tsirelson space is the first example of a Banach space in which neither an ℓp space nor a c0 space can be embedded. The Tsirelson space is reflexive.
It was introduced by B. S. Tsirelson in 1974. The same year, Figiel and Johnson published a related article (Figiel & Johnson (1974)) where they used the notation T for the dual of Tsirelson's example. Today, the letter T is the standard notation for the dual of the original example, while the original Tsirelson example is denoted by T*. In T* or in T, no subspace is isomorphic, as Banach space, to an ℓp space, 1 ≤ p ∞, or to c0.
All classical Banach spaces known to Banach (1932), spaces of continuous functions, of differentiable functions or of integrable functions, and all the Banach spaces used in functional analysis for the next forty years, contain some ℓp or c0. Also, new attempts in the early '70s to promote a geometric theory of Banach spaces led to ask whether or not every infinite-dimensional Banach space has a subspace isomorphic to some ℓp or to c0.
The radically new Tsirelson construction is at the root of several further developments in Banach space theory: the arbitrarily distortable space of Schlumprecht (Schlumprecht (1991)), on which depend Gowers' solution to Banach's hyperplane problem and the Odell–Schlumprecht solution to the distortion problem. Also, several results of Argyros et al. are based on ordinal refinements of the Tsirelson construction, culminating with the solution by Argyros–Haydon of the scalar plus compact problem.
00:01:39 1 Tsirelson's construction
00:04:42 2 Properties
00:06:22 3 Derived spaces
00:06:53 4 See also
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
Other Wikipedia audio articles at:
Upload your own Wikipedia articles through:
Speaking Rate: 0.9984390555619849
Voice name: en-US-Wavenet-D
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
In mathematics, especially in functional analysis, the Tsirelson space is the first example of a Banach space in which neither an ℓp space nor a c0 space can be embedded. The Tsirelson space is reflexive.
It was introduced by B. S. Tsirelson in 1974. The same year, Figiel and Johnson published a related article (Figiel & Johnson (1974)) where they used the notation T for the dual of Tsirelson's example. Today, the letter T is the standard notation for the dual of the original example, while the original Tsirelson example is denoted by T*. In T* or in T, no subspace is isomorphic, as Banach space, to an ℓp space, 1 ≤ p ∞, or to c0.
All classical Banach spaces known to Banach (1932), spaces of continuous functions, of differentiable functions or of integrable functions, and all the Banach spaces used in functional analysis for the next forty years, contain some ℓp or c0. Also, new attempts in the early '70s to promote a geometric theory of Banach spaces led to ask whether or not every infinite-dimensional Banach space has a subspace isomorphic to some ℓp or to c0.
The radically new Tsirelson construction is at the root of several further developments in Banach space theory: the arbitrarily distortable space of Schlumprecht (Schlumprecht (1991)), on which depend Gowers' solution to Banach's hyperplane problem and the Odell–Schlumprecht solution to the distortion problem. Also, several results of Argyros et al. are based on ordinal refinements of the Tsirelson construction, culminating with the solution by Argyros–Haydon of the scalar plus compact problem.