filmov
tv
Distributed Real Time Stream Processing: Why and How: Spark Summit East talk by Petr Zapletal
![preview_player](https://i.ytimg.com/vi/u63W1sHWrbM/maxresdefault.jpg)
Показать описание
The demand for stream processing is increasing a lot these days. Immense amounts of data have to be processed fast from a rapidly growing set of disparate data sources. This pushes the limits of traditional data processing infrastructures. These stream-based applications include trading, social networks, Internet of things, system monitoring, and many other examples.
A number of powerful, easy-to-use open source platforms have emerged to address this. But the same problem can be solved differently, various but sometimes overlapping use-cases can be targeted or different vocabularies for similar concepts can be used. This may lead to confusion, longer development time or costly wrong decisions.
A number of powerful, easy-to-use open source platforms have emerged to address this. But the same problem can be solved differently, various but sometimes overlapping use-cases can be targeted or different vocabularies for similar concepts can be used. This may lead to confusion, longer development time or costly wrong decisions.