filmov
tv
Accessing layer Tensors - Customising your models with TensorFlow 2

Показать описание
Link to this course:
Accessing layer Tensors - Customising your models with TensorFlow 2
TensorFlow 2 for Deep Learning Specialization
Welcome to this course on Customising your models with TensorFlow 2!
In this course you will deepen your knowledge and skills with TensorFlow, in order to develop fully customised deep learning models and workflows for any application. You will use lower level APIs in TensorFlow to develop complex model architectures, fully customised layers, and a flexible data workflow. You will also expand your knowledge of the TensorFlow APIs to include sequence models.
You will put concepts that you learn about into practice straight away in practical, hands-on coding tutorials, which you will be guided through by a graduate teaching assistant. In addition there is a series of automatically graded programming assignments for you to consolidate your skills.
At the end of the course, you will bring many of the concepts together in a Capstone Project, where you will develop a custom neural translation model from scratch.
TensorFlow is an open source machine library, and is one of the most widely used frameworks for deep learning. The release of TensorFlow 2 marks a step change in the product development, with a central focus on ease of use for all users, from beginner to advanced level.
This course follows on directly from the previous course Getting Started with TensorFlow 2. The additional prerequisite knowledge required in order to be successful in this course is proficiency in the python programming language, (this course uses python 3), knowledge of general machine learning concepts (such as overfitting/underfitting, supervised learning tasks, validation, regularisation and model selection), and a working knowledge of the field of deep learning, including typical model architectures (MLP, CNN, RNN, ResNet), and concepts such as transfer learning, data augmentation and word embeddings.
Tensorflow, Deep Learning, keras
Excellent course! 100% recommended for anyone looking for more advanced TensorFlow knowledge.,Very well organized tour through Tensorflow 2 API, I learned a lot and enjoyed the course
TensorFlow offers multiple levels of API for constructing deep learning models, with varying levels of control and flexibility. In this week you will learn to use the functional API for developing more flexible model architectures, including models with multiple inputs and outputs. You will also learn about Tensors and Variables, as well as accessing and using inner layers within a model. The programming assignment for this week will put these techniques this into practice with a transfer learning application on the dogs and cats image dataset.
Accessing layer Tensors - Customising your models with TensorFlow 2
Copyright Disclaimer under Section 107 of the copyright act 1976, allowance is made for fair use for purposes such as criticism, comment, news reporting, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favour of fair use.
Accessing layer Tensors - Customising your models with TensorFlow 2
TensorFlow 2 for Deep Learning Specialization
Welcome to this course on Customising your models with TensorFlow 2!
In this course you will deepen your knowledge and skills with TensorFlow, in order to develop fully customised deep learning models and workflows for any application. You will use lower level APIs in TensorFlow to develop complex model architectures, fully customised layers, and a flexible data workflow. You will also expand your knowledge of the TensorFlow APIs to include sequence models.
You will put concepts that you learn about into practice straight away in practical, hands-on coding tutorials, which you will be guided through by a graduate teaching assistant. In addition there is a series of automatically graded programming assignments for you to consolidate your skills.
At the end of the course, you will bring many of the concepts together in a Capstone Project, where you will develop a custom neural translation model from scratch.
TensorFlow is an open source machine library, and is one of the most widely used frameworks for deep learning. The release of TensorFlow 2 marks a step change in the product development, with a central focus on ease of use for all users, from beginner to advanced level.
This course follows on directly from the previous course Getting Started with TensorFlow 2. The additional prerequisite knowledge required in order to be successful in this course is proficiency in the python programming language, (this course uses python 3), knowledge of general machine learning concepts (such as overfitting/underfitting, supervised learning tasks, validation, regularisation and model selection), and a working knowledge of the field of deep learning, including typical model architectures (MLP, CNN, RNN, ResNet), and concepts such as transfer learning, data augmentation and word embeddings.
Tensorflow, Deep Learning, keras
Excellent course! 100% recommended for anyone looking for more advanced TensorFlow knowledge.,Very well organized tour through Tensorflow 2 API, I learned a lot and enjoyed the course
TensorFlow offers multiple levels of API for constructing deep learning models, with varying levels of control and flexibility. In this week you will learn to use the functional API for developing more flexible model architectures, including models with multiple inputs and outputs. You will also learn about Tensors and Variables, as well as accessing and using inner layers within a model. The programming assignment for this week will put these techniques this into practice with a transfer learning application on the dogs and cats image dataset.
Accessing layer Tensors - Customising your models with TensorFlow 2
Copyright Disclaimer under Section 107 of the copyright act 1976, allowance is made for fair use for purposes such as criticism, comment, news reporting, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favour of fair use.