Part-1: Dataloaders for different scenarios of data augmentation in PyTorch

preview_player
Показать описание
This video and upcoming videos will show how we can create data loaders for different scenarios of data augmentation in PyTorch.
Scenario -1: one augmented image from one input image.
Scenario-2: Using augmentation for increasing dataset, multiple augmented images from one input image.
Scenario-3: Using augmentation for increasing dataset of selective classes.

Links:

#DeepLearning #PyTorch #Dataloaders in Pytorch #Data Augmentation in Pytorch #DataAugmentation #Augmentation for increasing dataset size
#Custom Collate Function in PyTorch
Рекомендации по теме
Комментарии
Автор

Great stuff!!! Loving it. Is there any video in reducing the over fitting or improve the training performance on this topic?

Superrxeddy
Автор

Thanks for the video! I have a question, when doing the training loop, should I use a train data loader with no augmentation and another one with augmentation to double the data available? thnks

leo.y.comprendo