Simple reverse-mode Autodiff in Python

preview_player
Показать описание

-----

-------

-------

Timestamps:
00:00 Intro
00:18 Our simple (unary) function
00:35 Closed-Form symbolic derivative
01:16 Validate derivative by finite differences
01:55 What is automatic differentiation?
02:53 Backprop rule for sine function
04:27 Backprop rule for exponential function
06:06 Rule library as a dictionary
07:14 The heart: forward and backward pass
11:17 Trying the rough autodiff interface
13:15 Syntactic sugar to get a high-level interface
14:10 Compare autodiff with symbolic differentiation
14:59 Outro
Рекомендации по теме
Комментарии
Автор

Very clear explanation! Thanks and hope you'll get more views

sfdv
Автор

Oh boy this seems a bit above my comprehension level

micah
Автор

Thank you for the clear explanation! I wonder where does the term "cotangent" come from? A google search shows it comes from differential geometry, do I need to learn differential geometry to understand it ...?

houkensjtu
Автор

can you please tell your recommend resources to learn maths? or how did you learned math?

harikrishnanb
Автор

Thanks for the great content as always. One question and one comment. How would you handle it if it is a DAG instead of a chain? Any reference (book/paper) that you can share? I noted that for symbolic differentiation, you pay the price of redundant calculation (quadratic in the length of chains) but with constant memory. On the other hand, the auto-diff caches the intermediate values and has linear calculation but also linear memory.

zhenlanwang