filmov
tv
Neural Networks using Lux.jl and Zygote.jl Autodiff in Julia

Показать описание
-------
-------
-------
-------
Timestamps:
00:00 Intro
01:23 Imports
02:33 Constants/Hyperparameters
03:27 Instantiating the random number generator
03:57 Generate a toy dataset of noisy sine samples
06:11 Define neural architecture
10:13 Initialize network parameters (and layer states)
11:39 Network prediction with initial parameter state
14:25 Forward function: parameters to loss mapping
16:12 Preparing the optimizer
16:53 Train loop start
17:10 Transformed forward pass
18:51 Using vjp/back function for reverse pass
21:03 Update parameters with the gradient (parameter cotangent)
21:35 Finish training loop
22:21 Run training loop & investigate loss history
23:17 Prediction with trained parameters
24:42 Summary
25:53 Outro
Neural Networks using Lux.jl and Zygote.jl Autodiff in Julia
Lux.jl: Explicit Parameterization of Neural Networks in Julia | Avik Pal | JuliaCon 2022
What is (scientific) machine learning? An introduction through Julia's Lux.jl
Building Deep Learning Models in Flux.jl (4 minute tour)
Simple Chains: Fast CPU Neural Networks | Chris Elrod | JuliaCon 2022
Scaling up Training of any Flux.jl Model Made Easy | Dhairya Gandhi | JuliaCon 2022
Deep Neural Networks in Julia With Flux.jl | Talk Julia #10
What is a Pullback in Zygote.jl? | vector-Jacobian products in Julia
Learning Smoothly: Machine Learning With RobustNeuralNetworks.jl | Nicholas Barbara | JuliaCon 2023
Physics-Informed Neural Networks in Julia
Ignite.jl: A Brighter Way to Train Neural Networks | Jon Doucette | JuliaCon 2023
Implementing Neural Network in Mid Night from Scratch using JAX with Power Level quite fun 😁😁🐱🏍...
Using NeuralODEs in Real Life Applications | JuliaCon 2023
LotteryTickets.jl: Sparsify Your Flux Models | Marco Cognetta | JuliaCon 2023
`do block` Considered Harmless | Nicolau Leal Werneck | JuliaCon 2022
Neural Networks in Equinox (JAX DL framework) with Optax
Deep Reinforcement Learning | Decision Making Under Uncertainty using POMDPs.jl
2- Object Tracking in Julia(VideoIO.jl, Makie.jl, Images.jl)
Automating the composition of ML interatomic potentials in Julia | Emmanuel Lujan | JuliaCon 2023
Mixing Implicit and Explicit Deep Learning with Skip DEQs | Avik Pal | SciMLCon 2022
Physics-Informed Neural Networks in JAX (with Equinox & Optax)
[06x12] How to use your GPU for Machine Learning using CUDA.jl and Flux.jl (CUDA.jl 101 Part 3 of 3)
ChainRules.jl Meets Unitful.jl: Autodiff via Unit Analysis | Sam Buercklin | JuliaCon 2022
[82] Intro to FluxML and Machine Learning in Julia (Kyle Daruwalla)
Комментарии