filmov
tv
#38: Scikit-learn 35:Supervised Learning 13: Orthogonal Matching Pursuit
![preview_player](https://i.ytimg.com/vi/jBY1s1rjRzs/maxresdefault.jpg)
Показать описание
The video discusses the implementation of Orthogonal Matching Pursuit algorithm in Scikit-learn in Python using an example of noisy signal reconstruction.
Timeline
(Python 3.8)
00:00 - Outline of video
00:27 - Open Jupyter notebook
01:00 - Create signal data using .make_sparse_coded_signal()
05:50 - Create noise data
06:39 - Get indicies of non-zero elements in sparse array
07:26 - Plot: raw signal
09:00 - OrthogonalMatchingPursuit(): Noise free reconstruction
10:33 - Plot: Noise free reconstruction
12:38 - OrthogonalMatchingPursuit(): Noisy data reconstruction
13:28 - Plot: Noisy data reconstruction
14:08 - OrthogonalMatchingPursuit(): Noisy data reconstruction using CV (cross validation)
15:05 - Plot: Noisy data reconstruction using CV
15:25 - Ending notes
Timeline
(Python 3.8)
00:00 - Outline of video
00:27 - Open Jupyter notebook
01:00 - Create signal data using .make_sparse_coded_signal()
05:50 - Create noise data
06:39 - Get indicies of non-zero elements in sparse array
07:26 - Plot: raw signal
09:00 - OrthogonalMatchingPursuit(): Noise free reconstruction
10:33 - Plot: Noise free reconstruction
12:38 - OrthogonalMatchingPursuit(): Noisy data reconstruction
13:28 - Plot: Noisy data reconstruction
14:08 - OrthogonalMatchingPursuit(): Noisy data reconstruction using CV (cross validation)
15:05 - Plot: Noisy data reconstruction using CV
15:25 - Ending notes