A Functional Equation from Samara Math Olympiads

preview_player
Показать описание
🤩 Hello everyone, I'm very excited to bring you a new channel (aplusbi)
Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡

When you purchase something from here, I will make a small percentage of commission that helps me continue making videos for you.
If you are preparing for Math Competitions and Math Olympiads, then this is the page for you!
CHECK IT OUT!!! ❤️ ❤️ ❤️
❤️ f(x/(x-1)) = 2f(x) + x^2

If you need to post a picture of your solution or idea:
#radicals #radicalequations #algebra #calculus #differentialequations #polynomials #prealgebra #polynomialequations #numbertheory #diophantineequations #comparingnumbers #trigonometry #trigonometricequations #complexnumbers #math #mathcompetition #olympiad #matholympiad #mathematics #sybermath #aplusbi #shortsofsyber #iit #iitjee #iitjeepreparation #iitjeemaths #exponentialequations #exponents #exponential #exponent #systemsofequations #systems
#functionalequations #functions #function #maths #counting #sequencesandseries

#algebra #numbertheory #geometry #calculus #counting #mathcontests #mathcompetitions
via @YouTube @Apple @Desmos @NotabilityApp @googledocs @canva

PLAYLISTS 🎵 :

Рекомендации по теме
Комментарии
Автор

3:24 no need to replace x in f(x/(x-1)) with t/(t-1), as you stated already t=x/(x-1). Remember, komsu?

ioannismichalopoulos
Автор

It's a full family of functional equations:
f(ax + b ÷ cx – a) = λf(x) + g(x)
Its solution is:
f(x) = [λg(x) + g(ax + b ÷ cx – a)] / (1 – λ²)
In our case:
a = 1, b = 0, c = 1, λ = 2, g(x) = x².
So,
f(x) = –[2x² + x²/(x – 1)² ]/3

Igorious
Автор

With g(x) := x/(x-1) we get g(g(x)) = x. Hence f(g(x)) = 2f(x)+x² gives f(x) = f(g(g(x)) = 2f(g(x))+g²(x) = 2(2f(x)+x²)+g²(x) = 4f(x)+2x²+g²(x). So f(x) = (-1/3)*(2x²+g²(x)) = -x²(2+1/(x-1)²)/3. We can then check that such f satisfies the original equation.

dominiquelarchey-wendling
Автор

b = 2a + x²
a = 2b + x/(x-1)²
(2x² + x/(x-1)²)/3 = f(x)

mega_mango
Автор

Someone in the internet knows Samara😮
The equation is pretty neat, but I don't remember solving functional equations when I was there solving math Olympiads over four years ago.

РайанКупер-эо
Автор

Muy interesante ejercicio de funciones, muchas gracias por compartir tan buen video 😊❤😊. Con cambio de variable y procedimientos de simplificación y reducción, muy bien explicados. Saludos y bendiciones Profesor. 😊❤😊.

freddyalvaradamaranon
Автор

common way is to have x/(x-1) = t ; x = tx-t; x(t-1)=t; x = t/(t-1); with that
f(t) = 2f(t/t-1) + (t/(t-1))^2 you can replace this on one variable and have a system
2f1 = 4f2 + 2x
f2 = 2f1 + (x/(x-1))^2
f2 = 4f2 + 2x + (x/(x-1))^2
3f(x) =-2x-(x/(x-1))^2

cicik
Автор

it is very essay we can replace with X=x/x-1 we find f(x)=2f(x/x-1) + sq( x/x-1 ) and we have f(x/x-1)=2f(x)+ sq(x) it's a very easy system

solaymanelbellaj
Автор

so what I learnt from my journey in mathematics, never let urself be afraid from taking a step in solving even if u think it is idiot, stupid . No, No, every mistake will be a new lesson.

KeshkKeshk-lz
Автор

Please add domain and target I assume Reals? For people who want to solve before watching! Thx!!

climbnexplore
Автор

This is a very common question for a normal grade 10 student in China.

ForGu-dvwz
Автор

In fact, we don't need t. Just plug in (x/x-1) into each x in the original equation.

徐瑞斌-io
Автор

Great problem & solution!
Thx for pointing out the Turkish heritage too.
Some of my favorite YT Food Channels are from

MadScientyst
Автор

Why woud thst ne misleading at 2:09..How? It would just give 2 particular value but I don't see how it's misleading..

leif
Автор

ben de diyom bu adam kesin türk geröekten de öyleymiş

pjb.
Автор

cidden türkiyede mi büyüdün türkçe biliyor musun???

Kaan.-
Автор

Solution:
(1) f[x/(x-1)] = 2*f(x)+x² |-x² ⟹
2*f(x) = f[x/(x-1)]-x² |I replaced x/(x-1) for x ⟹
2*f[x/(x-1)] = ⟹
2*f[x/(x-1)] = ⟹
(2) 2*f[x/(x-1)] = f(x)-x²/(x-1)² ⟹
2*(1)-(2) = (3) 0 = 4*f(x)+2x²-f(x)+x²/(x-1)² ⟹
(3a) 0 = 3*f(x)+2x²+x²/(x-1)² |-3*f(x) ⟹
(3b) -3*f(x) = 2x²+x²/(x-1)² |/(-3) ⟹
(3c) f(x) = -2/3*x²-x²/[3*(x-1)²] = [-2*x²*(x-1)²-x²]/[3*(x-1)²]
= =
= [-2*x^4+4x³-3x²]/[3*(x-1)²] ⟹
(3d) f(x) = x²*(-2*x²+4x-3)/[3*(x-1)²]

gelbkehlchen
Автор

writing z = x /( x - 1) one gets
z = 1 + 1/( x - 1)
or (z - 1)( x - 1) = 1
Hereby f (z) = 2 f (x) + x ^2 ...Eq_1
Again
f ( z /( 1 - z) ) = 2 f ( z) + z ^2
or f ( x) = 2 f ( z) + Eq_2
Eq (1).& Eq (2) gives
f ( x) = 2 ( 2 f ( x) + x^2) + z ^2

3f (x) + 2 x^2 + ( x / ( x - 1)) ^2 = 0

f (x) = - (x/( x -1))^2 [1 + (x -1)^2] /3
= -(x/( x -1))^2 [x^2 - 2 x + 2] /3

satrajitghosh
Автор

Buruwanta kisima deyak terenne na.a nisa wedakuth na.ap dete.harakge.chik.uba kawda passen yana watayak taram wath ganan ganne.

smusic
Автор

So you are Turkish . Currently India & Turkiye are not friendly. I think I should unsubscribe your channel. 😂😂

shaileshs.