Distributed Data Show Episode 65: Fraud Use Cases for Graph with Jeremy Hanna and Jim Hatcher

preview_player
Показать описание
David talks with Jim Hatcher and Jeremy Hanna about use cases for fraud detection, how the landscape has changed over time, learns what fraudsters are, and how graph databases are perfect to fit the need for modern requirements.

Highlights!
0:16 - Welcoming Jim and Jeremy to the episode
0:53 - What is the landscape of fraud use cases?
2:22 - We talk through some examples of fraud detection
4:08 - Different SLA’s for an insurance claim compared to point of sale
5:06 - The balance of security vs. convenience
6:05 - Balancing the business value of aggressive fraud detection
6:45 - How much data, what’s the required SLA that fits the use case?
9:45 - What are fraudsters?
11:05 - Detecting human trafficking with automatic fraud detection
12:56 - Differences between fraud detection technology in the past with rules engines compared to current strategies using machine learning
17:38 - Using graph databases becoming more of a trend for fraud detection
20:50 - Fraudsters are pretty tech savvy
21:51 - Visualization can help when humans are in the loop
26:22 - Fraud is a perfect use case for a graph database

ABOUT DATASTAX ENTERPRISE 6
DataStax powers the Right-Now Enterprise with the always-on, distributed cloud database built on Apache Cassandra™ and designed for hybrid cloud. DataStax Enterprise 6 (DSE 6) includes industry-leading performance, self-driving operational simplicity, and robust analytics.

CONNECT WITH DATASTAX

ABOUT DATASTAX ACADEMY
Рекомендации по теме