filmov
tv
My top 25 pandas tricks
Показать описание
You're about to learn 25 tricks that will help you to work faster, write better pandas code, and impress your friends. These are the BEST tricks I've learned from 5 years of teaching Python's pandas library.
Don't miss the BONUS at the end of this video!
TRICKS:
0:00 Introduction
0:43 1. Show installed versions
1:20 2. Create an example DataFrame
2:22 3. Rename columns
3:47 4. Reverse row order
4:36 5. Reverse column order
5:01 6. Select columns by data type
5:40 7. Convert strings to numbers
6:55 8. Reduce DataFrame size
8:15 9. Build a DataFrame from multiple files (row-wise)
10:00 10. Build a DataFrame from multiple files (column-wise)
10:45 11. Create a DataFrame from the clipboard
11:50 12. Split a DataFrame into two random subsets
12:57 13. Filter a DataFrame by multiple categories
13:52 14. Filter a DataFrame by largest categories
14:42 15. Handle missing values
15:57 16. Split a string into multiple columns
16:59 17. Expand a Series of lists into a DataFrame
17:39 18. Aggregate by multiple functions
18:41 19. Combine the output of an aggregation with a DataFrame
19:56 20. Select a slice of rows and columns
20:52 21. Reshape a MultiIndexed Series
22:04 22. Create a pivot table
23:01 23. Convert continuous data into categorical data
23:56 24. Change display options
24:47 25. Style a DataFrame
26:14 Bonus. Profile a DataFrame
DOWNLOAD the Jupyter notebook:
WATCH my introductory series, Data Analysis with pandas:
JOIN the "Data School Insiders" community:
LET'S CONNECT!
Don't miss the BONUS at the end of this video!
TRICKS:
0:00 Introduction
0:43 1. Show installed versions
1:20 2. Create an example DataFrame
2:22 3. Rename columns
3:47 4. Reverse row order
4:36 5. Reverse column order
5:01 6. Select columns by data type
5:40 7. Convert strings to numbers
6:55 8. Reduce DataFrame size
8:15 9. Build a DataFrame from multiple files (row-wise)
10:00 10. Build a DataFrame from multiple files (column-wise)
10:45 11. Create a DataFrame from the clipboard
11:50 12. Split a DataFrame into two random subsets
12:57 13. Filter a DataFrame by multiple categories
13:52 14. Filter a DataFrame by largest categories
14:42 15. Handle missing values
15:57 16. Split a string into multiple columns
16:59 17. Expand a Series of lists into a DataFrame
17:39 18. Aggregate by multiple functions
18:41 19. Combine the output of an aggregation with a DataFrame
19:56 20. Select a slice of rows and columns
20:52 21. Reshape a MultiIndexed Series
22:04 22. Create a pivot table
23:01 23. Convert continuous data into categorical data
23:56 24. Change display options
24:47 25. Style a DataFrame
26:14 Bonus. Profile a DataFrame
DOWNLOAD the Jupyter notebook:
WATCH my introductory series, Data Analysis with pandas:
JOIN the "Data School Insiders" community:
LET'S CONNECT!
Комментарии