filmov
tv
The adjoining figure shows two different arrangements in which two ...
Показать описание
The adjoining figure shows two different arrangements in which two square wire frames of same resistance are placed in a uniform constantly decreasing magnetic field \( \mathrm{B} \).
\( P \)
The value of magnetic flux in each case is given by
(A) Case I: \( \Phi=\pi\left(\mathrm{L}^{2}+\ell^{2}\right) \) B; Case II: \( \Phi=\pi\left(\mathrm{L}^{2}-\ell^{2}\right) \mathrm{B} \)
(B) Case I: \( \Phi=\pi\left(\mathrm{L}^{2}+\ell^{2}\right) \) B; Case II: \( \Phi=\pi\left(\mathrm{L}^{2}+\ell^{2}\right) \mathrm{B} \)
(C) Case I: \( \Phi=\left(\mathrm{L}^{2}+\ell^{2}\right) \) B; Case II: \( \Phi=\left(\mathrm{L}^{2}-\ell^{2}\right) \mathrm{B} \)
(D) Case I: \( \Phi=(\mathrm{L}+\ell)^{2} \mathrm{~B} ; \) Case II: \( \Phi=\pi(\mathrm{L}-\ell)^{2} \mathrm{~B} \)
\( P \)
The value of magnetic flux in each case is given by
(A) Case I: \( \Phi=\pi\left(\mathrm{L}^{2}+\ell^{2}\right) \) B; Case II: \( \Phi=\pi\left(\mathrm{L}^{2}-\ell^{2}\right) \mathrm{B} \)
(B) Case I: \( \Phi=\pi\left(\mathrm{L}^{2}+\ell^{2}\right) \) B; Case II: \( \Phi=\pi\left(\mathrm{L}^{2}+\ell^{2}\right) \mathrm{B} \)
(C) Case I: \( \Phi=\left(\mathrm{L}^{2}+\ell^{2}\right) \) B; Case II: \( \Phi=\left(\mathrm{L}^{2}-\ell^{2}\right) \mathrm{B} \)
(D) Case I: \( \Phi=(\mathrm{L}+\ell)^{2} \mathrm{~B} ; \) Case II: \( \Phi=\pi(\mathrm{L}-\ell)^{2} \mathrm{~B} \)