filmov
tv
Linear Regression - Fun and Easy Machine Learning
Показать описание
Linear regression and just how simple it is to set one up to provide valuable information on the relationships between variables. Watch this video for a quick and easy solution to do a linear regression in Excel.
Want to learn more?
Hi and welcome to a new lecture in the Fun and Easy Machine Learning Series. Today I’ll be talking about Linear Regression. We show you also how implement a linear regression in excel.
Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data. One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable.
Dependent Variable – Variable who’s values we want to explain or forecast
Independent or explanatory Variable that Explains the other variable. Values are independent.
Dependent variable can be denoted as y, so imagine a child always asking y is he dependent on his parents.
And then you can imagine the X as your ex boyfriend/girlfriend who is independent because they don’t need or depend on you. A good way to remember it. Anyways
Used for 2 Applications
To Establish if there is a relation between 2 variables or see if there is statistically signification relationship between the two variables-
• To see how increase in sin tax has an effect on how many cigarettes packs are consumed
• Sleep hours vs test scores
• Experience vs Salary
• Pokemon vs Urban Density
• House floor area vs House price
Forecast new observations – Can use what we know to forecast unobserved values
Here are some other examples of ways that linear regression can be applied.
• So say the sales of ROI of Fidget spinners over time.
• Stock price over time
• Predict price of Bitcoin over time.
Linear Regression is also known as the line of best fit
The line of best fit can be represented by the linear equation y = a + bx or y = mx + b or y = b0+b1x
You most likely learnt this in school.
So b is is the intercept, if you increase this variable, your intercept moves up or down along the y axis.
M is your slope or gradient, if you change this, then your line rotates along the intercept.
Data is actually a series of x and y observations as shown on this scatter plot. They do not follow a straight line however they do follow a linear pattern hence the term linear regression
Assuming we already have the best fit line, We can calculate the error term Epsilon. Also known as the Residual. And this is the term that we would like to minimize along all the points in the data series.
So say if we have our linear equation but also represented in statistical notation. The residual fit in to our equation as shown y = b0+b1x + e
------------------------------------------------------------
Support us on Patreon
Chat to us on Discord
Interact with us on Facebook
Check my latest work on Instagram
Learn Advanced Tutorials on Udemy
------------------------------------------------------------
To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out
Please Like and Subscribe for more videos :)
Want to learn more?
Hi and welcome to a new lecture in the Fun and Easy Machine Learning Series. Today I’ll be talking about Linear Regression. We show you also how implement a linear regression in excel.
Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data. One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable.
Dependent Variable – Variable who’s values we want to explain or forecast
Independent or explanatory Variable that Explains the other variable. Values are independent.
Dependent variable can be denoted as y, so imagine a child always asking y is he dependent on his parents.
And then you can imagine the X as your ex boyfriend/girlfriend who is independent because they don’t need or depend on you. A good way to remember it. Anyways
Used for 2 Applications
To Establish if there is a relation between 2 variables or see if there is statistically signification relationship between the two variables-
• To see how increase in sin tax has an effect on how many cigarettes packs are consumed
• Sleep hours vs test scores
• Experience vs Salary
• Pokemon vs Urban Density
• House floor area vs House price
Forecast new observations – Can use what we know to forecast unobserved values
Here are some other examples of ways that linear regression can be applied.
• So say the sales of ROI of Fidget spinners over time.
• Stock price over time
• Predict price of Bitcoin over time.
Linear Regression is also known as the line of best fit
The line of best fit can be represented by the linear equation y = a + bx or y = mx + b or y = b0+b1x
You most likely learnt this in school.
So b is is the intercept, if you increase this variable, your intercept moves up or down along the y axis.
M is your slope or gradient, if you change this, then your line rotates along the intercept.
Data is actually a series of x and y observations as shown on this scatter plot. They do not follow a straight line however they do follow a linear pattern hence the term linear regression
Assuming we already have the best fit line, We can calculate the error term Epsilon. Also known as the Residual. And this is the term that we would like to minimize along all the points in the data series.
So say if we have our linear equation but also represented in statistical notation. The residual fit in to our equation as shown y = b0+b1x + e
------------------------------------------------------------
Support us on Patreon
Chat to us on Discord
Interact with us on Facebook
Check my latest work on Instagram
Learn Advanced Tutorials on Udemy
------------------------------------------------------------
To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out
Please Like and Subscribe for more videos :)
Комментарии