Fabrication

preview_player
Показать описание
Symposium on Geometry Processing
2017 Graduate School Lecture by Bernd Bickel & Niloy Mitra

In recent years, computer graphics researchers have contributed significantly in developing novel computational tools for 3D printing. Various methods have been presented concurrently for designing objects with functional goals, hence a coherent analysis and discussion is missing. This course starts by reviewing current state-of-the-art 3D printing hardware and software pipelines and analyzes their potential as well as shortcomings. The course then focuses on computational specification to fabrication methods, which allow designing or computing an object's shape and material composition from a functional description. These approaches are grouped into two categories, automatic methods without user interaction and interactive methods that keep the designer in the loop. We review automatic methods for translating functional specifications such as appearance and mechanical properties into functional material compositions that can be 3D printed, providing a coherent view of the underlying data structures, inverse problem formulations, and optimization strategies. We then describe recent efforts in interactive design and simulation methods for 3D printing. The aim of this course is to present a coherent review, common theory, and understanding of specification to fabrication methods, and to provide insights on current limitations on the software and hardware side that may inspire future work.
Рекомендации по теме