Сделал фракталы в 3D

preview_player
Показать описание


В этом видео я делаю фракталы: множество Мандельброта, множество Жюлиа. В том числе и в 3D
Рекомендации по теме
Комментарии
Автор

Вывод: Как не старайся, ты всё равно треугольник Серпинского)

ElectroPlayer
Автор

Обычный треугольник : Кто ты?
Треугольник Серпинского: Я это ты, но везде

СергейУваров-гн
Автор

Онигири в следующем видео: Сегодня я сделал для вас четырёхмерный клеточный автомат, создающий фракталы с золотой пропорцией и позволяющий узнать расстояние до объектов, находящихся вне зоны видимой вселенной. Кстати, этот узор находится в некоторых картинах Ван Гога, он встречается в нотах музыки Баха, а если перевести его в код на java, он создаёт майнкрафт.

Артём-егк
Автор

Чуть позже: -А теперь, найдите площадь этой фигуры...

IlirlL
Автор

I don't speak Russian but I am glad this came up in my recommendations, I love fractals and have recently been raymarching them with fragment shaders

Ziar
Автор

Круто! Очень красивая математика получается!

MakarSvet
Автор

То самое чувство, когда блоггеру не приходится просить досматривать видео до конца

ПолуфабриКатя
Автор

Не зря похоже символ иллюминатов это треугольник))
Очень интересное видео о_о

TrishkaBum
Автор

15:32
1 bit
2 bits
4 bits
8 bits
16 bits
32 bits
64 bits
(Ну согласитесь, прям как в то самом меме про улучшение качества)

dextergt
Автор

Лайк, если ты тоже треугольник Серпинского 🗿

vectozavr
Автор

Насчёт шахматной схемы из 7:00, она верна только для того случая, если король не может ходить по диагонали (а он может).

garvellokenxvi
Автор

Вывод: Что бы ты не сделал, все превратится в треугольник Серпинского)

tmpsnt
Автор

Самое интересное, что все эти множества, да и сами по себе фракталы являются непросто математическими конструкциями, но еще и используются в природе. Выходит что банальный клеточный автомат при желании можно натянуть даже на физиологию аллозавра 😂😂😂

crazy_paleontologist
Автор

*Только включил видео и зашёл в комменты*
Все: Мы треугольник Серпинского

ivanek
Автор

*Множество Мандельброта не самоподобно... Оно самобесподобно!*

АнонАнонов-ыо
Автор

Хочу 10 часовую версию всех этих фигур во всех возможных формах. Чувак пересматривал их по 8 раз. Это невероятно залипательно

imaybetobbi
Автор

На 3:07 вообще все фигуры были. Соты, квадраты (или прямоугольники) и даже треугольник Серпинского получился! Это все очень напоминает еще как фигуру которую можно посмотреть в 2, 3, 4 D вариантов! Удивляет конечно как мир создан по этому подобию! Одновременно легко все и одновременно сложно :)

МахмудОглы-яз
Автор

14:41 "мы не знаем что это такое, если бы мы знали что это такое, мы не знаем что это такое"

MartianDill
Автор

Какой плавный переход от согнутой бумажки до топологической размерности. : )

Lopkip
Автор

Я: кто создал наш мир?
Onigiri: треугольник серпинского

kizi_