Orthogonal Range Queries: Range Trees and Kd-Trees (2/6) | Computational Geometry - Lecture 05

preview_player
Показать описание
Computational Geometry
Lecture 05: Orthogonal Range Queries: Range Trees and Kd-Trees
Part II: Kd-Trees: Construction
Philipp Kindermann

Рекомендации по теме
Комментарии
Автор

Your way of visualizing and explaining these algorithms is really easy to follow and understand. Saved me big time in algorithm analysis class.

dolphinos
Автор

Our (i.e. at my university) algorithm was a little different. We used [..., m+1] and [m-1, ...] for the points that are still to be sorted in - effectively excluding the median for future iterations. Also we drew lines so that every point had a line in the end. Not sure if those are just minor alterations, but just in case someone else stumbles upon this.

theelysium
Автор

Can you explain KD tree for paragraph matching

mahnoorasif
Автор

Welchen Median nimmt man? Den bezüglich der Anzahl der Punkte oder den bezüglich der Werte in x-/ y- Koordinate? Was macht man bei einer geraden Anzahl von Punkten wie 10, der Median wäre 5, 5? Ich habe mehrere Videos zu k d Bäumen gefunden, manche teilen die Ebenen durch Punkte und manche ziehen wirklich den Median der gegebenen Werte.

nchm