Cours Matrices et applications linéaires PCSI-MPSi vidéo 2

preview_player
Показать описание
00:00 Bilan des exemples et exercices --- Questions soulevées
02:04 une bonne base pour un projecteur
05:19 une bonne base pour les symétries vectorielles
10:11 Définition 2
13:38 Exemple 1
16:52 Exemple 2
22:52 Théorème 3 : Isomorphisme entre L(E,F) et Mn,p(IK)
41:08 Conséquences
43:58 Corollaire 4
45:27 Proposition 5
52:02 I 2) La cas des endomorphismes
52:39 Définition 6 (matrice d'un endomorphisme dans une base)
55:41 Exemple 1
59:18 Exemple 2 (distinct de celui du cours papier)
1:02:19 Théorème 7 (Isomorphisme entre L(E ) et Mn(IK))
1:03:15 Exercice 4
Рекомендации по теме
Комментарии
Автор

55:46 donc en fait si on a une application quelconque f et que l'on fait sa matrice d'une base B dans la même base B on écrira mat B, B (f) et pas mat B (f) ? Mais si on a un endomorphisme et qu'on nous demande de faire sa matrice dans deux bases différentes de E on reprend les notations classiques ?
Par exemple à 1h02 dans l'exemple avec la comb lin de M et MT comment devrait on écrire la matrice mat B, B (phi) ou mat B (phi) ou on s'en fiche ? Vu qu'on ne sait pas si c'est un endomorphisme ou pas....

h_reg