filmov
tv
Canonical Correlation Analysis in R| Canonical Correlation Analysis | R Data Analysis Examples
Показать описание
Canonical Correlation Analysis in R| Canonical Correlation Analysis | R Data Analysis Examples
In statistics, canonical-correlation analysis [CCA], also called canonical variates analysis, is a way of inferring information from cross-covariance matrices. If we have two vectors X = [X1, ..., Xn] and Y = [Y1, ..., Ym] of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of X and Y which have a maximum correlation with each other.
library(CCA)
library(tidyverse)
theme_set(theme_bw(16))
penguins = penguins %=% drop_na()
penguins %=% head()
X = penguins %=%
select(bill_depth_mm, bill_length_mm) %=%
scale()
Y = penguins %=%
select(flipper_length_mm,body_mass_g) %=%
scale()
head(Y)
cc_results =- cancor(X,Y)
str(cc_results)
cc_results$xcoef
cc_results$ycoef
cc_results$cor
cor(CC1_X,CC1_Y)
assertthat::are_equal(cc_results$cor[1],
cor(CC1_X,CC1_Y)[1])
cca_df = penguins %=%
mutate(CC1_X=CC1_X,
CC1_Y=CC1_Y,
CC2_X=CC2_X,
CC2_Y=CC2_Y)
cca_df %=%
ggplot(aes(x=CC1_X,y=CC1_Y))+
geom_point()
cca_df %=%
ggplot(aes(x=species,y=CC1_X, color=species))+
geom_boxplot(width=0.5)+
geom_jitter(width=0.15)+
cca_df %=%
ggplot(aes(x=species,y=CC1_Y, color=species))+
geom_boxplot(width=0.5)+
geom_jitter(width=0.15)
cca_df %=%
ggplot(aes(x=CC1_X,y=CC1_Y, color=species))+
geom_point()
cca_df %=%
ggplot(aes(x=CC2_X,y=CC2_Y, color=sex))+
geom_point()
In statistics, canonical-correlation analysis [CCA], also called canonical variates analysis, is a way of inferring information from cross-covariance matrices. If we have two vectors X = [X1, ..., Xn] and Y = [Y1, ..., Ym] of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of X and Y which have a maximum correlation with each other.
library(CCA)
library(tidyverse)
theme_set(theme_bw(16))
penguins = penguins %=% drop_na()
penguins %=% head()
X = penguins %=%
select(bill_depth_mm, bill_length_mm) %=%
scale()
Y = penguins %=%
select(flipper_length_mm,body_mass_g) %=%
scale()
head(Y)
cc_results =- cancor(X,Y)
str(cc_results)
cc_results$xcoef
cc_results$ycoef
cc_results$cor
cor(CC1_X,CC1_Y)
assertthat::are_equal(cc_results$cor[1],
cor(CC1_X,CC1_Y)[1])
cca_df = penguins %=%
mutate(CC1_X=CC1_X,
CC1_Y=CC1_Y,
CC2_X=CC2_X,
CC2_Y=CC2_Y)
cca_df %=%
ggplot(aes(x=CC1_X,y=CC1_Y))+
geom_point()
cca_df %=%
ggplot(aes(x=species,y=CC1_X, color=species))+
geom_boxplot(width=0.5)+
geom_jitter(width=0.15)+
cca_df %=%
ggplot(aes(x=species,y=CC1_Y, color=species))+
geom_boxplot(width=0.5)+
geom_jitter(width=0.15)
cca_df %=%
ggplot(aes(x=CC1_X,y=CC1_Y, color=species))+
geom_point()
cca_df %=%
ggplot(aes(x=CC2_X,y=CC2_Y, color=sex))+
geom_point()
Комментарии