filmov
tv
Visualize Plot and Subplots using Matplotlib and Python - P1

Показать описание
Visualize Plot and Subplots using Matplotlib and Python
Topic to be Covered - Data Visualisation
import pandas as pd
No 1
No 2
'''
1 2 3
1 x 3
1,3,1
1,3,2
1,3,3'''
No 3
No 4
'''
1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17
6 x 3'''
categories = ['Agriculture','Architecture','Art and Performance',
'Biology','Business','Communications and Journalism',
'Computer Science','Education','Engineering',
'English','Foreign Languages','Health Professions',
'Math and Statistics','Physical Sciences','Psychology',
'Public Administration','Social Sciences and History']
ax = [ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8,ax9,ax10,ax11,ax12,ax13,ax14,ax15,ax16,ax17]
for i in range(len(categories)):
ax[i].plot(df['Year'],df[categories[i]],c='red',label='Women')
ax[i].plot(df['Year'],100-df[categories[i]],c='blue',label='Women')
ax[i].set_title(categories[i])
ax[i].set_ylim(0,100)
All Playlist of this youtube channel
=======
1. Data Preprocessing in Machine Learning
2. Confusion Matrix in Machine Learning, ML, AI
3. Anaconda, Python Installation, Spyder, Jupyter Notebook, PyCharm, Graphviz
4. Cross Validation, Sampling, train test split in Machine Learning
5. Drop and Delete Operations in Python Pandas
6. Matrices and Vectors with python
7. Detect Outliers in Machine Learning
8. TimeSeries preprocessing in Machine Learning
9. Handling Missing Values in Machine Learning
10. Dummy Encoding Encoding in Machine Learning
11. Data Visualisation with Python, Seaborn, Matplotlib
12. Feature Scaling in Machine Learning
13. Python 3 basics for Beginner
14. Statistics with Python
15. Sklearn Scikit Learn Machine Learning
16. Python Pandas Dataframe Operations
17. Linear Regression, Supervised Machine Learning
18 Interiew Questions on Machine Learning and Data Science
19. Jupyter Notebook Operations
Topic to be Covered - Data Visualisation
import pandas as pd
No 1
No 2
'''
1 2 3
1 x 3
1,3,1
1,3,2
1,3,3'''
No 3
No 4
'''
1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17
6 x 3'''
categories = ['Agriculture','Architecture','Art and Performance',
'Biology','Business','Communications and Journalism',
'Computer Science','Education','Engineering',
'English','Foreign Languages','Health Professions',
'Math and Statistics','Physical Sciences','Psychology',
'Public Administration','Social Sciences and History']
ax = [ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8,ax9,ax10,ax11,ax12,ax13,ax14,ax15,ax16,ax17]
for i in range(len(categories)):
ax[i].plot(df['Year'],df[categories[i]],c='red',label='Women')
ax[i].plot(df['Year'],100-df[categories[i]],c='blue',label='Women')
ax[i].set_title(categories[i])
ax[i].set_ylim(0,100)
All Playlist of this youtube channel
=======
1. Data Preprocessing in Machine Learning
2. Confusion Matrix in Machine Learning, ML, AI
3. Anaconda, Python Installation, Spyder, Jupyter Notebook, PyCharm, Graphviz
4. Cross Validation, Sampling, train test split in Machine Learning
5. Drop and Delete Operations in Python Pandas
6. Matrices and Vectors with python
7. Detect Outliers in Machine Learning
8. TimeSeries preprocessing in Machine Learning
9. Handling Missing Values in Machine Learning
10. Dummy Encoding Encoding in Machine Learning
11. Data Visualisation with Python, Seaborn, Matplotlib
12. Feature Scaling in Machine Learning
13. Python 3 basics for Beginner
14. Statistics with Python
15. Sklearn Scikit Learn Machine Learning
16. Python Pandas Dataframe Operations
17. Linear Regression, Supervised Machine Learning
18 Interiew Questions on Machine Learning and Data Science
19. Jupyter Notebook Operations
Комментарии