Top 250 Finite Dimensional Vector Space CUET PG Questions 2025 | Lec-9 | IFAS

preview_player
Показать описание
Get ready for the Top 250 Finite Dimensional Vector Space CUET PG Questions 2025 in this detailed lecture. Finite Dimensional Vector Space CUET PG questions are broken down to help you master this critical topic. Learn key concepts and practice the most important finite dimensional vector space CUET PG questions to boost your preparation. This lecture by IFAS will guide you through various problem-solving techniques and strategies to excel in your upcoming exam.

IFAS: India's No. 1 Institute for CUET PG Maths, IIT JAM Mathematics & other MSc Math Entrance Exam.

Dear Aspirants,
To get a detailed free counseling session, you can fill out the form 👉:

Need help? Call @ 9172266888

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Download IFAS App for Free CUET PG Mathematics Lectures, PYQ & Practice Questions: 👇

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

👇Enroll for IFAS CUET PG Mathematics Online Classes: 👇
✔️Live Interactive lectures with India’s Best Educators for CUET PG Mathematics.
✔️You can ask doubts in live online classes.
✔️Clear your doubts after class as well with Expert Faculty Members using Chat & Audio Functionality
✔️ CUET PG Mathematics Recorded Video lectures can be downloaded in IFAS App & watch offline.
✔️ CUET PG Mathematics Online Test Series (CUET PG Mathematics Unit Test & CUET PG Mathematics Mock Test) with detailed analysis.
✔️Teacher's eNote will be available in IFAS App.
✔️ Daily Practice Sheet for each lecture to crystal clear concepts.
✔️ CUET PG Mathematics Previous Year Question with detailed explanation.
✔️ Updated CUET PG Mathematics Study Material.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
🎯 Top Playlists:

✔️CUET PG Mathematics Integral Calculus 2025

✔️CUET PG Mathematics Real Analysis 2025

🌐Stay Updated Via Other social media:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
#cuetpgmathematics #cuetpg #ifas #cuetpgpreparation #cuetpgq2025 #cuetpgquestionpractice
Рекомендации по теме
Комментарии
Автор

HW ka answer option a, b
(1)Because if A is scalar matrix of order n then CA(x)=(x-a)^n imply MA(x)=(x-a)
(2)If A is not scalar then it's eigen values are distinct imply and we know that MA(x)|CA(x) and MA(x)=(x-ai), {where i belongs to [1, k] } not possible because A is not a scalar matrix imply mA(x)= (x-a1)^k1...(x-ak)^km imply deg(mA(x))>=2

pritiinstitute