filmov
tv
CS769 - Lec 10, 7-2-2022 OptML: Convexity, Minimia and Lipschitz Continuity: Toward Algorithms
Показать описание
Convexity, Minimia and Lipschitz Continuity: Toward Algorithms for Optimization
Ganesh Ramakrishnan
Рекомендации по теме
1:30:37
CS769 - Lec 10, 7-2-2022 OptML: Convexity, Minimia and Lipschitz Continuity: Toward Algorithms
1:26:15
CS769 - Lec 16, 7-3-2022 OptML: Accelerated GD, Line Search Approaches & Demos, Subgradient Des...
1:30:53
CS769 - Lec 8, 31-1-2022 OptML: Calculus of Subgradients
0:29:01
Computing Bi-Lipschitz Outlier Embeddings into the Line
0:04:44
Gradient Descent on Non-Convex Functions Why it Happens and Solutions | Interview Questions
0:20:12
Rectifiable Level Sets-Lipschitz Functions
2:04:15
IJCAI 2020 Tutorial Part II: Submodular Optimization for Data, Feature, and Topic Summarization.
0:31:32
Xiaoqi Yang: Lipschitz-like property relative to a set and the generalized Mordukhovich criterion
1:30:42
CS769 - Lec 1, 6-1-2022 OptML: Optimization Problems in Machine Learning
0:54:59
Optimization problems: standard setting, equivalent problems
0:43:50
Method of Lagrange multipliers
1:07:50
Understanding the Convergence of Optimization Algorithms for Minimax Machine Learning Yi Zhou (UECE)
1:11:40
Mathematics for Machine Learning - Lecture 3: Orthogonal projection, Logistic regression, Likelihood
0:21:27
Advanced Convex Optimization : Lecture 5B : Convergence analysis
0:04:59
The Effect of Offspring Population Size on NSGA-II: A Preliminary Study
0:49:49
Jürgen Jost (8/29/21): Geometry and Topology of Data
0:02:09
1: What is Machine Learning?
0:42:43
Optimization problem part 1: standard setting, equivalent problems
0:35:46
Lecture 6 (part 2): Subgradients
0:01:31
Optimization Is More Important Than Innovation
1:34:20
EE596B Lecture 4, Submodular Functions, Optimization, and Applications to Machine Learning
1:09:25
MACHINE LEARNING HELPS DISCRETE OPTIMIZATION
0:51:14
Opt.04 Steepest Descent Method
0:23:37
Directional Derivative of Scalar Function