filmov
tv
Meta Regression Graph Neural Network (Meta-RegGNN)| PRIME MICCAI 2022
Показать описание
#regression #gnn #connectivity #MICCAI2022 #PRIME2022
========
Abstract
========
Decrypting intelligence from the human brain construct is vital in the detection of particular neurological disorders. Recently, functional brain connectomes have been used successfully to predict behavioral scores. However, state-of-the-art methods, on one hand, neglect the topological properties of the connectomes and, on the other hand, fail to solve the high inter-subject brain heterogeneity. To address these limitations, we propose a novel regression graph neural network through meta-learning namely Meta-RegGNN for predicting behavioral scores from brain connectomes. The parameters of our proposed regression GNN are explicitly trained so that a small number of gradient steps combined with a small training data amount produces a good generalization to unseen brain connectomes. Our results on verbal and full-scale intelligence quotient (IQ) prediction outperform existing methods in both neurotypical and autism spectrum disorder cohorts. Furthermore, we show that our proposed approach ensures generalizability, particularly for autistic subjects.
========
Abstract
========
Decrypting intelligence from the human brain construct is vital in the detection of particular neurological disorders. Recently, functional brain connectomes have been used successfully to predict behavioral scores. However, state-of-the-art methods, on one hand, neglect the topological properties of the connectomes and, on the other hand, fail to solve the high inter-subject brain heterogeneity. To address these limitations, we propose a novel regression graph neural network through meta-learning namely Meta-RegGNN for predicting behavioral scores from brain connectomes. The parameters of our proposed regression GNN are explicitly trained so that a small number of gradient steps combined with a small training data amount produces a good generalization to unseen brain connectomes. Our results on verbal and full-scale intelligence quotient (IQ) prediction outperform existing methods in both neurotypical and autism spectrum disorder cohorts. Furthermore, we show that our proposed approach ensures generalizability, particularly for autistic subjects.