filmov
tv
#60: Scikit-learn 57:Supervised Learning 35: Kernels and Kernel Ridge regression
Показать описание
The video discusses the code for kernels linear, polynomial, sigmoid and RBF and implementation of Kernel Ridge Regression using Scikit learn in Python.
Timeline
(Python 3.8)
00:00 - Outline of video
00:57 - Open Jupyter notebook
01:30 - Add dimension to a design matrix
05:46 - Add dimension: create 2D, 3D plot
07:13 - * * * CORRECTION * * *: it should be '_' i.e. underscore instead of '-'
10:20 - Compare fit: after adding dimension
12:32 - Linear kernel
13:52 - Polynomial kernel
14:33 - * * * CORRECTION * * *: forgot to add the '=' sign as 'k='
17:06 - RBF (radial basis function) kernel
20:15 - Sigmoid kernel
22:20 - Custom kernel
24:58 - Fit: Ridge classifier
27:26 - Fit: Kernel Ridge regression
29:10 - Fit: KernelRidge: kernel='precomputed'
33:10 - Ending notes
Timeline
(Python 3.8)
00:00 - Outline of video
00:57 - Open Jupyter notebook
01:30 - Add dimension to a design matrix
05:46 - Add dimension: create 2D, 3D plot
07:13 - * * * CORRECTION * * *: it should be '_' i.e. underscore instead of '-'
10:20 - Compare fit: after adding dimension
12:32 - Linear kernel
13:52 - Polynomial kernel
14:33 - * * * CORRECTION * * *: forgot to add the '=' sign as 'k='
17:06 - RBF (radial basis function) kernel
20:15 - Sigmoid kernel
22:20 - Custom kernel
24:58 - Fit: Ridge classifier
27:26 - Fit: Kernel Ridge regression
29:10 - Fit: KernelRidge: kernel='precomputed'
33:10 - Ending notes