filmov
tv
MIT 6.S191 (2020): Neural Rendering
![preview_player](https://i.ytimg.com/vi/BCZ56MU-KhQ/maxresdefault.jpg)
Показать описание
MIT Introduction to Deep Learning 6.S191: Lecture 9
Neural Rendering
Lecturer: Chuan Li (Lambda Labs)
January 2020
Lecture Outline
0:00 - Introduction
5:40 - Forward rendering
12:18 - End-to-end rendering
14:20 - 3D data representations
16:12 - RenderNet (Voxels)
21:00 - Neural point based graphics (Pointclouds)
24:06 - Mesh model rendering
25:00 - Inverse rendering
28:33 - HoloGAN
34:40 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
Neural Rendering
Lecturer: Chuan Li (Lambda Labs)
January 2020
Lecture Outline
0:00 - Introduction
5:40 - Forward rendering
12:18 - End-to-end rendering
14:20 - 3D data representations
16:12 - RenderNet (Voxels)
21:00 - Neural point based graphics (Pointclouds)
24:06 - Mesh model rendering
25:00 - Inverse rendering
28:33 - HoloGAN
34:40 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
MIT 6.S191 (2020): Neural Rendering
MIT 6.S191 (2020): Neurosymbolic AI
MIT 6.S191 (2020): Deep Learning New Frontiers
MIT 6.S191 (2020): Convolutional Neural Networks
MIT 6.S191 (2021): Introduction to Deep Learning
MIT Introduction to Deep Learning (2022) | 6.S191
MIT 6.S191 (2020): Machine Learning for Scent
MIT 6.S191: (Google) Generative AI for Media
MIT 6.S191: Towards AI for 3D Content Creation
MIT 6.S191 (2022): Deep Learning New Frontiers
Matthias Niessner - Why Neural Rendering is Super Cool!
The Crazy World of Neural Rendering
Neural Rendering (CVPR 2020) - Afternoon Session
State of the Art Neural Rendering and The Future of Content Creation – keynote by Matthias Niessner...
IGNOR: Image-guided Neural Object Rendering (ICLR 2020)
Neural Rendering for Performance Capture CVPR 2020 Tutorial Talk
Lecture 19 - Efficient Video Understanding and Generative Models | MIT 6.S965
VIS 2020: Volumetric Isosurface Rendering with Deep Learning-based Super-Resolution
Neural Scene Representation and Rendering
GTC 2020: DLSS - Image Reconstruction for Real-time Rendering with Deep Learning
Neural Light Transport for Relighting and View Synthesis (TOG 2021)
How Does a Generative Neural Network Work Inside? David Bau, MIT
MIT 6.S192 - Lecture 5: 'Painting with the Neurons of a GAN' by David Bau
Vittorio Ferrari - Recent research on 3D Deep Learning
Комментарии