Math Olympiad - Exponential Trigonometric Problem - find x!

preview_player
Показать описание
Math Olympiad - Exponential Trigonometric Problem - find x! #matholympiad #maths #matholympics #mathcompetition #mathematics #mathcontest #education #mathstricks #mathstricks #trigonometry #solution #equation
Рекомендации по теме
Комментарии
Автор

I think there is a mistake. Yes, arcsin or sin-1 (1/2) is pi/6 or 30 degs as you say, but is also the 5/6 pi solution. The sin wave is positive from [0, Pi]. So the 5/6 pi is not a solution to negative arcsin -1/2

AdrianRif
Автор

The following solutions are missing :
7.pi / 6 + 2k.pi, 11.pi / 6 + 2k.pi,
2.pi / 3 + 2k.pi, 4.pi / 3 + 2k.pi

andretewem
Автор

Solutions of trigonometrics equation is the key. Please correct your video to give students the good answers.

pierreneau
Автор

By observation: sin(x), cos(x) = {Sqrt(3)/2, 1/2}, {1/2, Sqrt(3)/2}. x = {pi/3, pi/6} + 2k*pi, or the symmetrical pairs at {5pi/6, 5pi/3} + 2k*pi.

tunneloflight
Автор

Very nice problem and very nice solution ❤❤

SALogics
Автор

as many people mentioned - you missed half of all solutions. Didnt expect to see such fails on such chanel

torrentinocom
Автор

Nice and easy to follow explanation and nice musical background as well.
What's the name of the band ?

NotFragil-dsej
Автор

If sin^2(x)=sin^2(y)
Then x = nπ + or - y

AsifAbdullah-joeb
Автор

Sin30= sin150
Sin 60 = - sin300

Also
If sin x = sin y
Then x = nπ+{(-1)^n } y

AsifAbdullah-joeb
Автор

let u=81^((sinx)^2), u^2-30u+81=0, u= --> u--> 81^((sinx)^2)= 27, 3, (sinx)^2= log27/log81, log3/log81, (sinx)^2= 3/4, 1/2,
sinx=+/-V3/2, +/-1/2, x= +/-pi/6 +k*2*pi, +/-pi/3 +k*2*pi,

prollysine
Автор

Incomplete solution and tedious steps. Paid by the ( boring) minute? Anyone capable of solving at this level an equation surely can combine elementary steps into one! But then, the author ignores all the solutions!!!

petercrem-wlev
Автор

{81^sin^2^x+81^2^x ➖ }+{81^2co^x+81^2^x ➖}={162^sin^4^x+162^cos^4^x }=324^sincos^8^x 10^30^24 1^1^3^1^14^3^2sincos^1^1^1x 1^2^2^3^1 1^2^3^1 23 (sincosx ➖ 3sincosx+2).

RealQinnMalloryu
Автор

@understandingmath1
Oxford new syllabus
D1, D2, D3 Math solutions are availabe.

AizahAsif-or
Автор

I hate u unnecessarily lengthen the video by resorting to avoidal steps.

g.k.
Автор

Same for other trigonometric functions

AsifAbdullah-joeb
Автор

Во всех решениях надо не п/6, а +/-п/6, и т. д.

tatjanamaslova
Автор

There's a mistake. Sinx = 1/2 ie x = pi/4 not pi/6

azizkharef