filmov
tv
Bagging/Bootstrap Aggregating in Machine Learning with examples

Показать описание
00:00 – Intro
00:16 – Bagging/Bootstrap
02:28 – Ensemble learning
Bagging, short for Bootstrap Aggregating, is an ensemble learning technique used to improve the stability and accuracy of machine learning models by reducing variance. It involves creating multiple versions of a predictor and using these to get an aggregated result.
Other subject playlist Link:
--------------------------------------------------------------------------------------------------------------------------------------
►Theory of Computation
►Operating System:
►Database Management System:
►Computer Networks:
►Artificial Intelligence:
►Computer Architecture:
►Design and Analysis of algorithms (DAA):
►Structured Query Language (SQL):
---------------------------------------------------------------------------------------------------------------------------------------
Our Social Media:
--------------------------------------------------------------------------------------------------------------------------------------
►A small donation would help us continue making GREAT Lectures for you.
►For any other Contribution like notes pdfs, feedback, suggestion etc
►For Bussiness Query
00:16 – Bagging/Bootstrap
02:28 – Ensemble learning
Bagging, short for Bootstrap Aggregating, is an ensemble learning technique used to improve the stability and accuracy of machine learning models by reducing variance. It involves creating multiple versions of a predictor and using these to get an aggregated result.
Other subject playlist Link:
--------------------------------------------------------------------------------------------------------------------------------------
►Theory of Computation
►Operating System:
►Database Management System:
►Computer Networks:
►Artificial Intelligence:
►Computer Architecture:
►Design and Analysis of algorithms (DAA):
►Structured Query Language (SQL):
---------------------------------------------------------------------------------------------------------------------------------------
Our Social Media:
--------------------------------------------------------------------------------------------------------------------------------------
►A small donation would help us continue making GREAT Lectures for you.
►For any other Contribution like notes pdfs, feedback, suggestion etc
►For Bussiness Query
Комментарии