Week 1 Lecture 2 - Supervised Learning

preview_player
Показать описание
Supervised learning, classification and regression, examples, linear mapping, quadratic mapping, performance, over-fitting, inductive biases – language bias, search bias, training set, test set, validation set, applications of supervised learning, sum-of-square error minimization.
Рекомендации по теме
Комментарии
Автор

Clear and comprehensive information. Sincerest thanks.

Molaga
Автор

Who can give a thumbs down to this lecture is beyond my understanding

lidiyapriyadarsinik
Автор

Thank You Sir. Precise, Simple and onto Point

mukulrana
Автор

11:19 correction in transcript

Y's are not numeric. instead of wise or not

jaivikkachhia
Автор

If someone can’t understand these slides. Kindly learn algebra and statistics

nikhiljerin
Автор

good morning sir, please tell me how can i download your notes

anjalinaudiyal
Автор

sir please share the notes regarding to machine learning course

yugandharkanaparthi
welcome to shbcf.ru