Integral of (2x+7)/(4+(1+x)^2) (substitution)

preview_player
ะŸะพะบะฐะทะฐั‚ัŒ ะพะฟะธัะฐะฝะธะต

๐Ÿ‘‹ ๐…๐จ๐ฅ๐ฅ๐จ๐ฐ @๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ๐ฌ๐Ÿ๐จ๐ซ๐ฒ๐จ๐ฎ ๐Ÿ๐จ๐ซ ๐š ๐๐š๐ข๐ฅ๐ฒ ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ ๐Ÿ˜‰

๐Ÿšถ ๐’๐ญ๐ž๐ฉ๐ฌ
00:00 Write 7 as 2+5
00:17 Split into two integrals
00:49 Rewrite expression
02:03 Substitution: u=x^2+2x+5
02:20 Differentiate in both sides
02:27 Substitution: v=(1+x)/2
02:35 Differentiate in both sides
02:46 Substitute x^2+2x+5 and (2x+2)dx
03:01 Substitute (1+x)/2 and dx
03:24 Integrate 1/u
03:28 Simplify and integrate 1/(1+v^2)
03:42 Undo substitution: u in terms of x
03:51 Undo substitution: v in terms of x
04:01 Add integration constant +C
04:11 Final answer!
04:15 See more!

๐ˆ๐ง๐ญ๐ž๐ ๐ซ๐š๐ญ๐ข๐จ๐ง ๐ฆ๐ž๐ญ๐ก๐จ๐๐ฌ ๐ฉ๐ฅ๐š๐ฒ๐ฅ๐ข๐ฌ๐ญ๐ฌ

๐ŸŽ“ ๐‡๐š๐ฏ๐ž ๐ฒ๐จ๐ฎ ๐ฃ๐ฎ๐ฌ๐ญ ๐ฅ๐ž๐š๐ซ๐ง๐ž๐ ๐š๐ง ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ญ๐ข๐จ๐ง ๐ฆ๐ž๐ญ๐ก๐จ๐? ๐…๐ข๐ง๐ ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž๐ฌ ๐จ๐Ÿ ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ๐ฌ ๐ฌ๐จ๐ซ๐ญ๐ž๐ ๐›๐ฒ ๐ฅ๐ž๐ฏ๐ž๐ฅ (๐ž๐š๐ฌ๐ฒ, ๐ฆ๐ž๐๐ข๐ฎ๐ฆ ๐š๐ง๐ ๐ก๐ข๐ ๐ก) ๐ข๐ง ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ๐ฌ๐Ÿ๐จ๐ซ๐ฒ๐จ๐ฎ.๐œ๐จ๐ฆ:

๐…๐จ๐ฅ๐ฅ๐จ๐ฐ ๐ˆ๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ๐ฌ ๐…๐จ๐ซ๐˜๐จ๐ฎ

๐‡๐จ๐ฐ ๐ญ๐จ ๐๐จ๐ง๐š๐ญ๐ž

#integralsforyou #integrals #integration
ะ ะตะบะพะผะตะฝะดะฐั†ะธะธ ะฟะพ ั‚ะตะผะต
ะšะพะผะผะตะฝั‚ะฐั€ะธะธ
ะะฒั‚ะพั€


๐Ÿ” ๐€๐ซ๐ž ๐ฒ๐จ๐ฎ ๐ฅ๐จ๐จ๐ค๐ข๐ง๐  ๐Ÿ๐จ๐ซ ๐š ๐ฉ๐š๐ซ๐ญ๐ข๐œ๐ฎ๐ฅ๐š๐ซ ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ? ๐…๐ข๐ง๐ ๐ข๐ญ ๐ฐ๐ข๐ญ๐ก ๐ญ๐ก๐ž ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ ๐ฌ๐ž๐š๐ซ๐œ๐ก๐ž๐ซ:

๐ŸŽ“ ๐‡๐š๐ฏ๐ž ๐ฒ๐จ๐ฎ ๐ฃ๐ฎ๐ฌ๐ญ ๐ฅ๐ž๐š๐ซ๐ง๐ž๐ ๐š๐ง ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ญ๐ข๐จ๐ง ๐ฆ๐ž๐ญ๐ก๐จ๐? ๐…๐ข๐ง๐ ๐ž๐š๐ฌ๐ฒ, ๐ฆ๐ž๐๐ข๐ฎ๐ฆ ๐š๐ง๐ ๐ก๐ข๐ ๐ก ๐ฅ๐ž๐ฏ๐ž๐ฅ ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž๐ฌ ๐ก๐ž๐ซ๐ž:

๐Ÿ‘‹ ๐…๐จ๐ฅ๐ฅ๐จ๐ฐ @๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ๐ฌ๐Ÿ๐จ๐ซ๐ฒ๐จ๐ฎ ๐Ÿ๐จ๐ซ ๐š ๐๐š๐ข๐ฅ๐ฒ ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ! ๐Ÿ˜‰

๐Ÿ™‹โ€โ™‚ ๐ƒ๐จ๐ง๐š๐ญ๐ž:

IntegralsForYou
ะะฒั‚ะพั€

Here's how I solved it:

integral of 2x+7/4+(1+x)^2dx
= integral of 2x+2+5/4+(1+x)^2dx
= integral of 2x+2/4+(1+x)^2dx + integral of 5/4+(1+x)^2dx

Then I applied two u-subs:

For the integral of 2x+2/4+(1+x)^2dx
u=1+x
du=1dx
x = u-1

For the integral of 5/4+(1+x)^2dx
u=1+x
du=1dx

Therefore:

integral of 2(u-1)+2/4+u^2du + integral of 5/4+u^2du
So: integral of 2u-2+2/4+u^2du + integral of 5/4+u^2du
Thus I got: integral of 2u/4+u^2du + integral of 5/4+u^2du

I applied another substitution and used the z variable:

So z=4+u^2
dz=2udu

Thus:

integral of 2u/z*(dz/2u) + 5*integral of 1/4+u^2du

After integration of first integrand:

In[4+(1+x)^2] + 5*integral of 1/4(1+u^2/4)du

For second integral:

z=u/2 dz=1/2du
2dz=1du
So: 1/4*integral of 1/1+z^2*(dz/2)
1/2*integral of 1/1+z^2dz
1/2arctan(z) + C
1/2arctan(u/2) + C
1/2arctan(x+1/2) + C

Therefore, the final answer was:

In[4+(1+x)^2] + 5/2arctan(x+1/2) + C

Great video BTW!

erikusmetallicus
ะะฒั‚ะพั€

That was easy! Btw where are you from?

ayeshamahvish
ะะฒั‚ะพั€

bukur....if you remember what this is ๐Ÿ˜‚

ansumanc