Confusion Matrix | ML | AI | sklearn.metrics.classification_report | Classification Report - P8

preview_player
Показать описание

#technologycult #confusionmatrix #pythonformachinelearning #classificationreport

Topics to be covered -

Precision, Recall and F1 Score using

Classification Report

All Playlist of this youtube channel
=============================

1. Data Preprocessing in Machine Learning

2. Confusion Matrix in Machine Learning, ML, AI

3. Anaconda, Python Installation, Spyder, Jupyter Notebook, PyCharm, Graphviz

4. Cross Validation, Sampling, train test split in Machine Learning

5. Drop and Delete Operations in Python Pandas

6. Matrices and Vectors with python

7. Detect Outliers in Machine Learning

8. TimeSeries preprocessing in Machine Learning

9. Handling Missing Values in Machine Learning

10. Dummy Encoding Encoding in Machine Learning

11. Data Visualisation with Python, Seaborn, Matplotlib

12. Feature Scaling in Machine Learning

13. Python 3 basics for Beginner

14. Statistics with Python

15. Sklearn Scikit Learn Machine Learning

16. Python Pandas Dataframe Operations

17. Linear Regression, Supervised Machine Learning

18 Interview Questions on Machine Learning, Artificial Intelligence, Python Pandas and Python Basics

19. Jupyter Notebook Operations

Code Starts Here
==============

y = [1,0,1,1,2,2,0]
y_pred = [1,1,1,1,1,1,2]

precision_score(y,y_pred,average=None)
recall_score(y,y_pred,average=None)
f1_score(y,y_pred,average=None)

import pandas as pd

logit=LogisticRegression()


mat = confusion_matrix(y,y_pred)

classification_report(y,y_pred)
print(classification_report(y,y_pred))

target_names = ['Class A','Class B','Class C']

print(classification_report(y,y_pred,target_names=target_names))

print(classification_report(y,y_pred,labels=[0,1,2]))

print(classification_report(y,y_pred,labels=[0,1,2,3]))
Рекомендации по теме
Комментарии
Автор

can u explain diffrence btween confusin matrix and classification report

mohitpunia
Автор

What is difference between precision and precision score. Similarly, recall and recall score

datascientist