filmov
tv
ARCHER Webinar: Enabling multi-node MPI parallelisation of the LISFLOOD flood inundation model
Показать описание
Arno Proeme, EPCC
The availability of higher-resolution topographic datasets covering greater spatial domains has soared in recent years, pushing the limits of computational resources beyond those typically found in regional HPC services. In addition, many countries that are subject to large-scale flooding each year do not have access to real-time flood forecasting software. This webinar describes how HAIL-CAESAR, a geosciences code that implements the LISFLOOD flood inundation model, was ported to make use of LibGeoDecomp - a C++ stencil code HPC library - to enable multi-node parallelism. Whilst currently single inundation scenarios can take multiple days to run using standard hydrological modelling software, this project paves the way for ensemble runs that can be initiated on the basis of a 24 or 48 hour rainfall forecast and complete within shorter timescales, which should ultimately have major implications for flood warnings in developing countries.
The availability of higher-resolution topographic datasets covering greater spatial domains has soared in recent years, pushing the limits of computational resources beyond those typically found in regional HPC services. In addition, many countries that are subject to large-scale flooding each year do not have access to real-time flood forecasting software. This webinar describes how HAIL-CAESAR, a geosciences code that implements the LISFLOOD flood inundation model, was ported to make use of LibGeoDecomp - a C++ stencil code HPC library - to enable multi-node parallelism. Whilst currently single inundation scenarios can take multiple days to run using standard hydrological modelling software, this project paves the way for ensemble runs that can be initiated on the basis of a 24 or 48 hour rainfall forecast and complete within shorter timescales, which should ultimately have major implications for flood warnings in developing countries.