New thermodynamic model of crystal nucleation

preview_player
Показать описание
Conversion of most materials into organized crystalline structure starts with the nucleation process. One everyday example that many people may be familiar with is the rapid crystalization of supercooled water after the nucleation of a seed crystal. This phenomenon has been perplexing both scientists and ordinary people alike. The nucleation process, in which the atoms gather and form the smallest crystals, has been an important scientific phenomenon that has been widely studied since the late 1800s. The classical nucleation theory states that the assembly of monomers into a crystal structure occurs in a one-directional fashion. On the other hand, there have been some who suggested that a non-classical crystallization process involving metastable intermediate crystal structures may occur in some systems. However, it has been extremely difficult to confirm these theories through direct observation because the nucleation occurs very rapidly, and the size of a nucleus can be as small as a few atoms.

This century-old mystery has been finally solved by an international joint research team led by LEE Won Chul, Professor of Mechanical Engineering at Hanyang University Erica Campus, JEON Sungho, Postdoctoral Researcher of Mechanical Engineering at Hanyang University Erica Campus, PARK Jungwon, Professor of School of Chemical and Biological Engineering at Seoul National University and Center for Nanoparticle Research within the Institute for Basic Science (IBS), and Peter ERCIUS from Lawrence Berkeley National Laboratory. The joint research team has succeeded in observing the moment of the initial state of nanocrystal nucleation.

Read more about this research at:
Рекомендации по теме
visit shbcf.ru