filmov
tv
1964 IMO Problem #1

Показать описание
Online Resources:
Books:
+ Djukic, et al. (2011) The IMO Compendium 1959-2009, Springer, 2nd edition.
+ Greitzer (1978), International Mathematical Olympiads 1959-1977, Mathematical Association of America (MAA).
+ Klamkin (1986), International Mathematical Olympiads 1978-1985, Mathematical Association of America (MAA).
+ Kuczma (2000), International Mathematical Olympiads 1986-1999, Mathematical Association of America (MAA).
Books:
+ Djukic, et al. (2011) The IMO Compendium 1959-2009, Springer, 2nd edition.
+ Greitzer (1978), International Mathematical Olympiads 1959-1977, Mathematical Association of America (MAA).
+ Klamkin (1986), International Mathematical Olympiads 1978-1985, Mathematical Association of America (MAA).
+ Kuczma (2000), International Mathematical Olympiads 1986-1999, Mathematical Association of America (MAA).
1964 IMO Problem #1
An IMO Divisibility Problem [IMO 1964 Problem 1]
One of the Easiest IMO problems | International Mathematical Olympiad 1964 Problem 1
IMO 1964 Problem 1: Easiest Number Theory Problem in History
IMO 1964 - 2^n - 1 and 2^n + 1(in fact this is easier than 1959 IMO problem 1)
IMO 1964 Problem 1 | An Interesting Number Theory Problem
Swedish Olympiad Question from 1964
The unexpectedly hard windmill question (2011 IMO, Q2)
A Maths Puzzle | International Mathematical Olympiad 1962 Problem 1
[Very first IMO problem in history] 1959 IMO Problem #1
1964 IMO Problem #2
The First IMO Problem | International Mathematical Olympiad 1959 Problem 1
1964 IMO Problem #4
1961 IMO Problem #1
1969 IMO Problem 1 - Algebra and Experimentation
1960 IMO Problem #1
Encontrar todos los enteros positivos... | IMO 1964
Geometric Inequality IMO (1961) Q2 (Using Cosine Rule and Trigo Identities)
1959 IMO Problem #1
Infinite Composite Sequences! IMO 1969 Problem 1
Trial and Error for an IMO Problem!? | International Mathematical Olympiad 1960 Problem 1
[Very first IMO in history] 1959 IMO Problem #2: Absolute Value and a Little Graph
Geometry Problem in IMO (1968) Q1
Problem Solving #18 (the easiest IMO problem?)
Комментарии