filmov
tv
If \( O A B C \) is a tetrahedron with equal edges and \( \hat{\mat...

Показать описание
If \( O A B C \) is a tetrahedron with equal edges and \( \hat{\mathbf{p}}, \hat{\mathbf{q}}, \hat{\mathbf{r}} \) are unit vectors along bisectors of \( \overrightarrow{\mathbf{O A}}, \overrightarrow{\mathbf{O B}}: \overrightarrow{\mathbf{O B}}, \overrightarrow{\mathbf{O C}}: \overrightarrow{\mathbf{O C}}, \overrightarrow{\mathbf{O A}} \) respectively and \( \hat{\mathbf{a}}=\frac{\overrightarrow{\mathbf{O A}}}{|\overrightarrow{\mathbf{O A}}|}, \overrightarrow{\mathbf{b}}=\frac{\overrightarrow{\mathbf{O B}}}{|\overrightarrow{\mathbf{O B}}|}, \overrightarrow{\mathbf{c}}=\frac{\overrightarrow{\mathbf{O C}}}{|\overrightarrow{\mathbf{O C}}|} \), then :
\( \mathrm{P} \)
(a) \( \frac{[\hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}}]}{[\hat{\mathbf{p}} \hat{\mathbf{q}} \hat{\mathbf{r}}]}=\frac{3 \sqrt{3}}{2} \)
(b) \( \frac{[\hat{\mathbf{a}}+\hat{\mathbf{b}} \hat{\mathbf{b}}+\hat{\mathbf{c}} \hat{\mathbf{c}}+\hat{\mathbf{a}}]}{[\hat{\mathbf{p}}+\hat{\mathbf{q}} \hat{\mathbf{q}}+\hat{\mathbf{r}} \hat{\mathbf{r}}+\hat{\mathbf{p}}]}=\frac{3 \sqrt{3}}{4} \)
(c) \( \frac{[\hat{\mathbf{a}}+\hat{\mathbf{b}} \hat{\mathbf{b}}+\hat{\mathbf{c}} \hat{\mathbf{c}}+\hat{\mathbf{a}}]}{[\hat{\mathbf{p}} \hat{\mathbf{q}} \hat{\mathbf{r}}]}=\frac{3 \sqrt{3}}{2} \)
(d) \( \frac{[\hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}}]}{[\hat{\mathbf{p}}+\hat{\mathbf{q}} \hat{\mathbf{q}}+\hat{\mathbf{r}} \hat{\mathbf{r}}+\hat{\mathbf{p}}]}=\frac{3 \sqrt{3}}{4} \)
\( \mathrm{P} \)
(a) \( \frac{[\hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}}]}{[\hat{\mathbf{p}} \hat{\mathbf{q}} \hat{\mathbf{r}}]}=\frac{3 \sqrt{3}}{2} \)
(b) \( \frac{[\hat{\mathbf{a}}+\hat{\mathbf{b}} \hat{\mathbf{b}}+\hat{\mathbf{c}} \hat{\mathbf{c}}+\hat{\mathbf{a}}]}{[\hat{\mathbf{p}}+\hat{\mathbf{q}} \hat{\mathbf{q}}+\hat{\mathbf{r}} \hat{\mathbf{r}}+\hat{\mathbf{p}}]}=\frac{3 \sqrt{3}}{4} \)
(c) \( \frac{[\hat{\mathbf{a}}+\hat{\mathbf{b}} \hat{\mathbf{b}}+\hat{\mathbf{c}} \hat{\mathbf{c}}+\hat{\mathbf{a}}]}{[\hat{\mathbf{p}} \hat{\mathbf{q}} \hat{\mathbf{r}}]}=\frac{3 \sqrt{3}}{2} \)
(d) \( \frac{[\hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}}]}{[\hat{\mathbf{p}}+\hat{\mathbf{q}} \hat{\mathbf{q}}+\hat{\mathbf{r}} \hat{\mathbf{r}}+\hat{\mathbf{p}}]}=\frac{3 \sqrt{3}}{4} \)
Комментарии