filmov
tv
Suicide Rate Prediction Project using Python #shorts

Показать описание
Suicide Rate Prediction Project using Python | Python Final Year Project 2024
Features:-
Data Collection & Preprocessing:-
Gather historical data on suicide rates, demographics, and socio-economic factors.
Clean and normalize the dataset.
Feature Selection:-
Use factors like age, gender, GDP, unemployment, mental health indicators, and regional data.
Exploratory Data Analysis (EDA):-
Visualize data patterns with graphs (histograms, correlation heatmaps).
Identify and treat outliers.
Model Selection:-
Apply models like Linear Regression, Random Forest, Decision Trees, or XGBoost.
Model Training & Evaluation:-
Split data into training/testing sets and optimize using cross-validation.
Evaluate with metrics like Mean Squared Error, R-squared, or ROC curve.
Handling Imbalanced Data:-
Use techniques like SMOTE to balance the dataset.
Prediction & Visualization:-
Visualize predictions with charts and geospatial maps.
Model Deployment:-
Deploy using Flask/Django, with dashboards for insights (Streamlit/Dash).
If You Want This Project And To Successfully Run This Project In Your System You Can Message Me:-
WhatsApp: +919756568333
Follow Us On-
Don’t Forget To Like, Comment, Share & Subscribe
[ THANKS FOR WATCHING THIS VIDEO ]
#shorts #python #pythonproject #rahulmishracode #bcaprojects #btechprojects #finalyearproject #collegeproject #mcaprojects #majorprojects #majorproject #ieeeprojects #pythoncode #pythonprojects #machinelearningprojects #pythonmachinelearning #finalyearprojects #datascience #datascienceproject #artificialintelligenceproject #deeplearningproject #computerscienceproject #deeplearningprojects #academicprojects #bcastudents #mcastudents #btechstudents #bsccomputerscience #SuicideRatePredictionusingPython #SuicideRatePrediction #SuicideRatePredictioninPython #SuicidePredictionProject
Features:-
Data Collection & Preprocessing:-
Gather historical data on suicide rates, demographics, and socio-economic factors.
Clean and normalize the dataset.
Feature Selection:-
Use factors like age, gender, GDP, unemployment, mental health indicators, and regional data.
Exploratory Data Analysis (EDA):-
Visualize data patterns with graphs (histograms, correlation heatmaps).
Identify and treat outliers.
Model Selection:-
Apply models like Linear Regression, Random Forest, Decision Trees, or XGBoost.
Model Training & Evaluation:-
Split data into training/testing sets and optimize using cross-validation.
Evaluate with metrics like Mean Squared Error, R-squared, or ROC curve.
Handling Imbalanced Data:-
Use techniques like SMOTE to balance the dataset.
Prediction & Visualization:-
Visualize predictions with charts and geospatial maps.
Model Deployment:-
Deploy using Flask/Django, with dashboards for insights (Streamlit/Dash).
If You Want This Project And To Successfully Run This Project In Your System You Can Message Me:-
WhatsApp: +919756568333
Follow Us On-
Don’t Forget To Like, Comment, Share & Subscribe
[ THANKS FOR WATCHING THIS VIDEO ]
#shorts #python #pythonproject #rahulmishracode #bcaprojects #btechprojects #finalyearproject #collegeproject #mcaprojects #majorprojects #majorproject #ieeeprojects #pythoncode #pythonprojects #machinelearningprojects #pythonmachinelearning #finalyearprojects #datascience #datascienceproject #artificialintelligenceproject #deeplearningproject #computerscienceproject #deeplearningprojects #academicprojects #bcastudents #mcastudents #btechstudents #bsccomputerscience #SuicideRatePredictionusingPython #SuicideRatePrediction #SuicideRatePredictioninPython #SuicidePredictionProject