filmov
tv
𝑝-adic variation of automorphic sheaves – A. Iovita & F. Andreatta & V. Pilloni – ICM2018

Показать описание
Number Theory
Invited Lecture 3.3
𝑝-adic variation of automorphic sheaves
Adrian Iovita & Fabrizio Andreatta & Vincent Pilloni
Abstract: We review the construction of analytic families of Siegel modular cuspforms based on the notion of overconvergent modular forms of 𝑝-adic weight. We then present recent developments on the following subjects: the halo conjecture, the construction of 𝑝-adic L-functions, and the modularity of irregular motives.
ICM 2018 – International Congress of Mathematicians ©
Os direitos sobre todo o material deste canal pertencem ao Instituto de Matemática Pura e Aplicada, sendo vedada a utilização total ou parcial do conteúdo sem autorização prévia e por escrito do referido titular, salvo nas hipóteses previstas na legislação vigente.
The rights over all the material in this channel belong to the Instituto de Matemática Pura e Aplicada, and it is forbidden to use all or part of it without prior written authorization from the above mentioned holder, except in the cases prescribed in the current legislation.
Invited Lecture 3.3
𝑝-adic variation of automorphic sheaves
Adrian Iovita & Fabrizio Andreatta & Vincent Pilloni
Abstract: We review the construction of analytic families of Siegel modular cuspforms based on the notion of overconvergent modular forms of 𝑝-adic weight. We then present recent developments on the following subjects: the halo conjecture, the construction of 𝑝-adic L-functions, and the modularity of irregular motives.
ICM 2018 – International Congress of Mathematicians ©
Os direitos sobre todo o material deste canal pertencem ao Instituto de Matemática Pura e Aplicada, sendo vedada a utilização total ou parcial do conteúdo sem autorização prévia e por escrito do referido titular, salvo nas hipóteses previstas na legislação vigente.
The rights over all the material in this channel belong to the Instituto de Matemática Pura e Aplicada, and it is forbidden to use all or part of it without prior written authorization from the above mentioned holder, except in the cases prescribed in the current legislation.