filmov
tv
#2773 xdy-ydx=sqrt(x^2+y^2)dx [Demidovich]
Показать описание
... Demidovich, Демидович #Дифференциальные уравнения
Math Chad
#Demidovich
#ElementaryTasks
xdy-ydx=sqrt(x^2 y^2)dx
#2773
#Differential
Рекомендации по теме
#2773 xdy-ydx=sqrt(x^2+y^2)dx [Demidovich]
xdy-ydx=√(x^2+y^2)dx.
#1524 sqrt(x-2) [Demidovich]
#1532 sec^2(alpha) [Demidovich]
EDO homogenea 2 : xdy-ydx=sqrt(x^2+y^2)dx
#1521 (x^2-2x+3) [Demidovich]
#1530 1/(x^2-3x+2) [Demidovich]
#2769 y'=-(x+y)/x [Demidovich]
#1526 1/(x^2-1) [Demidovich]
#1531 z^3/(z^8+1) [Demidovich]
Ejercicio 1574 Demidovich
Ejercicio 1515
#2546 Sum(-1/2)^n-1 [Series]
Ejercicio 1514
#2.181 yy''+y'^2+1=0 [Differential Equation, Boundary Value Problem]
Equações Diferenciais (Exercício nº 2769 do Livro 'Demidovitch')
Equações Diferenciais (Exercício nº 2785 do Livro 'Demidovitch')
Let `y=f(x)` satisfies the equation `dx+ dy +e^3(x^2+2xy+y^2)dx=0` with `f(1)=1/e-1.` Identif
#2.160 y'''-3y''+3y'-y=e^x [Differential Equation]
16.5 - Rotacional e divergente - parte 2