filmov
tv
The Ultimate Linear Regression Guide just in 30 minutes for beginners# ISC Examination.
Показать описание
#vidyapeethkota pw #pathshala pw #umang pw #unacademy
Linear Regression Explained |
X on y and Y on x
#LinearRegression
#y on x # x on y
#Regression coefficient
# coefficient of correlation
Welcome to our video on linear regression! In this video, we'll explore the fundamentals of linear regression, its applications, and all fundamental.
What is Linear Regression?
Linear regression is a supervised learning algorithm used for predicting continuous outcomes. It's a powerful tool for modeling relationships between variables.
#LinearRegressionDefinition #SupervisedLearning
Types of Linear Regression
1. Y on x
2.x on y
#SimpleLinearRegression #MultipleLinearRegression
Assumptions of Linear Regression
1. Linearity
2. Independence
3. Homoscedasticity
4. Normality
5. No multicollinearity
#LinearRegressionAssumptions
Linear Regression Equation
Y = β0 + β1X + ε
#LinearRegressionEquation
Cost Function
Gradient Descent
#GradientDescent
We'll use scikit-learn and pandas to implement linear regression.
Real-World Applications
1. Predicting house prices
2. Forecasting sales
3. Analyzing stock prices
#LinearRegressionApplications
Common Errors
1. Overfitting
2. Underfitting
#LinearRegressionErrors
Conclusion
Linear regression is a powerful tool for predictive modeling. Mastering linear regression will enhance your data science skills.
#LinearRegressionConclusion
Additional Resources
- Linear Regression Tutorial by DataCamp
- Linear Regression Course by Coursera
- Linear Regression Book by Springer
#LinearRegressionResources
Follow Us
- Subscribe to our channel
- Follow us on social media
#FollowUs
Timestamps
0:00 - Introduction
2:00 - What is Linear Regression?
5:00 - Types of Linear Regression
10:00 - Assumptions of Linear Regression
15:00 - Linear Regression Equation
20:00 - Cost Function
25:00 - Gradient Descent
40:00 - Real-World Applications
45:00 - Common Errors
50:00 - Conclusion
#Timestamps
Hashtags:
#LinearRegression
#MachineLearning
#PredictiveModeling
#DataScience
#Statistics
#SupervisedLearning
#SimpleLinearRegression
#MultipleLinearRegression
#LinearRegressionAssumptions
#LinearRegressionEquation
#LinearRegressionApplications
#LinearRegressionErrors
#LinearRegressionConclusion
#LinearRegressionResources
#FollowUs
Linear Regression Explained |
X on y and Y on x
#LinearRegression
#y on x # x on y
#Regression coefficient
# coefficient of correlation
Welcome to our video on linear regression! In this video, we'll explore the fundamentals of linear regression, its applications, and all fundamental.
What is Linear Regression?
Linear regression is a supervised learning algorithm used for predicting continuous outcomes. It's a powerful tool for modeling relationships between variables.
#LinearRegressionDefinition #SupervisedLearning
Types of Linear Regression
1. Y on x
2.x on y
#SimpleLinearRegression #MultipleLinearRegression
Assumptions of Linear Regression
1. Linearity
2. Independence
3. Homoscedasticity
4. Normality
5. No multicollinearity
#LinearRegressionAssumptions
Linear Regression Equation
Y = β0 + β1X + ε
#LinearRegressionEquation
Cost Function
Gradient Descent
#GradientDescent
We'll use scikit-learn and pandas to implement linear regression.
Real-World Applications
1. Predicting house prices
2. Forecasting sales
3. Analyzing stock prices
#LinearRegressionApplications
Common Errors
1. Overfitting
2. Underfitting
#LinearRegressionErrors
Conclusion
Linear regression is a powerful tool for predictive modeling. Mastering linear regression will enhance your data science skills.
#LinearRegressionConclusion
Additional Resources
- Linear Regression Tutorial by DataCamp
- Linear Regression Course by Coursera
- Linear Regression Book by Springer
#LinearRegressionResources
Follow Us
- Subscribe to our channel
- Follow us on social media
#FollowUs
Timestamps
0:00 - Introduction
2:00 - What is Linear Regression?
5:00 - Types of Linear Regression
10:00 - Assumptions of Linear Regression
15:00 - Linear Regression Equation
20:00 - Cost Function
25:00 - Gradient Descent
40:00 - Real-World Applications
45:00 - Common Errors
50:00 - Conclusion
#Timestamps
Hashtags:
#LinearRegression
#MachineLearning
#PredictiveModeling
#DataScience
#Statistics
#SupervisedLearning
#SimpleLinearRegression
#MultipleLinearRegression
#LinearRegressionAssumptions
#LinearRegressionEquation
#LinearRegressionApplications
#LinearRegressionErrors
#LinearRegressionConclusion
#LinearRegressionResources
#FollowUs
Комментарии