filmov
tv
quickStart with R (Part 1): Getting started, data wrangling, and EDA (Part 1)

Показать описание
THIRD edition of the introduction to R workshop. Part 1
0:00 - Introduction
10:55 - Reprex - REPRoducible EXample
13:51 - Assignment and Pipes
17:00 - R: a data-first programming approach
18:44 - Tidyverse: a modern data science approach to R
20:17 - Tidy Data
22:01 - outline
22:27 - reproducibility (brief definition)
23:38 - RStudio Projects
24:05 - some reproducible barriers, e.g. setwd()
25:24 - Literate coding
26:53 - Role in Reproducibility
28:34 - Demonstration
32:53 - demo: RStudio projects
33:04 - demo: Some IDE settings to improve your reproducibility
33:50 - demo: RStudio projects (continued)
36:25 - demo: how to import data
38:11 - demo: Scripts and R Markdown notebooks
39:25 - demo: render different types of reports & literate coding
52:12 - demo: render an MSWord file
53:38 - data wrangling
55:48 - downloading workshop code and data from a GitHub repository
1:01:51 - dplyr
1:04:16 - dplyr::filter() -- subset by row
1:05:14 - dplyr::select() -- subset by column
1:06:22 - dplyr::arrange() - sort rows by variable
1:10:11 - glimpse()
1:16:53 - dplyr::mutate() - manipulate variable values
1:22:23 - summarize() ; group_by() ; count()
1:27:47 - data types - char / dbl / int
1:32:12 - Questions and Answers
Part of the Rfun learning series:
R and the Tidyverse are a data-first coding language that enables reproducible workflows. In this two-part workshop, you’ll learn the fundamentals of R, everything you need to know to quickly get started. You’ll learn how to wrangle data for analysis, gain a brief introduction to visualization, practice Exploratory Data Analysis (EDA), and how to generate reports. By the end of part 1 you will import data, edit and save scripts, subset data, use projects to organize your work, and develop self-help techniques.
---
0:00 - Introduction
10:55 - Reprex - REPRoducible EXample
13:51 - Assignment and Pipes
17:00 - R: a data-first programming approach
18:44 - Tidyverse: a modern data science approach to R
20:17 - Tidy Data
22:01 - outline
22:27 - reproducibility (brief definition)
23:38 - RStudio Projects
24:05 - some reproducible barriers, e.g. setwd()
25:24 - Literate coding
26:53 - Role in Reproducibility
28:34 - Demonstration
32:53 - demo: RStudio projects
33:04 - demo: Some IDE settings to improve your reproducibility
33:50 - demo: RStudio projects (continued)
36:25 - demo: how to import data
38:11 - demo: Scripts and R Markdown notebooks
39:25 - demo: render different types of reports & literate coding
52:12 - demo: render an MSWord file
53:38 - data wrangling
55:48 - downloading workshop code and data from a GitHub repository
1:01:51 - dplyr
1:04:16 - dplyr::filter() -- subset by row
1:05:14 - dplyr::select() -- subset by column
1:06:22 - dplyr::arrange() - sort rows by variable
1:10:11 - glimpse()
1:16:53 - dplyr::mutate() - manipulate variable values
1:22:23 - summarize() ; group_by() ; count()
1:27:47 - data types - char / dbl / int
1:32:12 - Questions and Answers
Part of the Rfun learning series:
R and the Tidyverse are a data-first coding language that enables reproducible workflows. In this two-part workshop, you’ll learn the fundamentals of R, everything you need to know to quickly get started. You’ll learn how to wrangle data for analysis, gain a brief introduction to visualization, practice Exploratory Data Analysis (EDA), and how to generate reports. By the end of part 1 you will import data, edit and save scripts, subset data, use projects to organize your work, and develop self-help techniques.
---
Комментарии