filmov
tv
Lenz law explained
Показать описание
From my first video demonstrating Lenz's law, many people asked for it to be explained.
Magnetic fields from strong magnets can create counter-rotating currents in a copper or aluminium pipe. This is shown by dropping the magnet through the pipe. The descent of the magnet inside the pipe is observably slower than when dropped outside the pipe.
When a voltage is generated by a change in magnetic flux according to Faraday's law, the polarity of the induced voltage is such that it produces a current whose magnetic field opposes the change which produces it. The induced magnetic field inside any loop of wire always acts to keep the magnetic flux in the loop constant. The direction of an induced current can be determined using the right-hand rule to show which direction of current flow would create a magnetic field that would oppose the direction of changing flux through the loop. In the examples below, if the flux is increasing, the induced field acts in opposition to it. If it is decreasing, the induced field acts in the direction of the applied field to oppose the change.
Magnetic fields from strong magnets can create counter-rotating currents in a copper or aluminium pipe. This is shown by dropping the magnet through the pipe. The descent of the magnet inside the pipe is observably slower than when dropped outside the pipe.
When a voltage is generated by a change in magnetic flux according to Faraday's law, the polarity of the induced voltage is such that it produces a current whose magnetic field opposes the change which produces it. The induced magnetic field inside any loop of wire always acts to keep the magnetic flux in the loop constant. The direction of an induced current can be determined using the right-hand rule to show which direction of current flow would create a magnetic field that would oppose the direction of changing flux through the loop. In the examples below, if the flux is increasing, the induced field acts in opposition to it. If it is decreasing, the induced field acts in the direction of the applied field to oppose the change.
Комментарии