filmov
tv
Ecology Live with Enrico Rezende: Temperature effects in organisms and communities
Показать описание
The British Ecological Society is broadcasting free online talks on the latest ecological research during the coronavirus lockdown period. In this talk, Enrico Rezende of the Pontificia Universidad Católica de Chile talks about temperature effects in organisms and communities.
Why is global warming a major concern? Temperature affects biological processes in multiple ways, and warming impacts ecological communities across the world. In this talk, Enrico discusses how temperature affects organisms at different levels of organisation and the conceptual frameworks that thermal biologists currently employ to study this pressing issue.
REFERENCES
REFERENCES
• Mannion, P. D., Upchurch, P., Benson, R. B., & Goswami, A. (2014). The latitudinal biodiversity gradient through deep time. Trends in Ecology & Evolution 29: 42-50.
• Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature 466: 1098-1101.
• Pachauri, R. K., et al. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.
• Urban, M. C. (2015). Accelerating extinction risk from climate change. Science 348: 571-573.
• Huey, R. B., & Kingsolver, J. G. (1989). Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution 4: 131-135.
• Sinclair, B. J., et al. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecology Letters 19: 1372-1385.
• Rezende, E. L., & Bozinovic, F. (2019). Thermal performance across levels of biological organization. Philosophical Transactions of the Royal Society B, 374: 20180549.
• Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences 105: 6668-6672.
• Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts of recent climate warming. Nature 467: 704-706.
• Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569: 108-111.
• Araújo, M. B., Ferri‐Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). Heat freezes niche evolution. Ecology Letters 16: 1206-1219.
• Hoffmann, A. A., Chown, S. L., & Clusella‐Trullas, S. (2013). Upper thermal limits in terrestrial ectotherms: how constrained are they? Functional Ecology 27: 934-949.
• Rezende, E. L., Castañeda, L. E., & Santos, M. (2014). Tolerance landscapes in thermal ecology. Functional Ecology 28: 799-809.
• Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P., & Maclean, I. M. (2020). A method for computing hourly, historical, terrain‐corrected microclimate anywhere on Earth. Methods in Ecology and Evolution 11: 38-43.
Why is global warming a major concern? Temperature affects biological processes in multiple ways, and warming impacts ecological communities across the world. In this talk, Enrico discusses how temperature affects organisms at different levels of organisation and the conceptual frameworks that thermal biologists currently employ to study this pressing issue.
REFERENCES
REFERENCES
• Mannion, P. D., Upchurch, P., Benson, R. B., & Goswami, A. (2014). The latitudinal biodiversity gradient through deep time. Trends in Ecology & Evolution 29: 42-50.
• Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature 466: 1098-1101.
• Pachauri, R. K., et al. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.
• Urban, M. C. (2015). Accelerating extinction risk from climate change. Science 348: 571-573.
• Huey, R. B., & Kingsolver, J. G. (1989). Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution 4: 131-135.
• Sinclair, B. J., et al. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecology Letters 19: 1372-1385.
• Rezende, E. L., & Bozinovic, F. (2019). Thermal performance across levels of biological organization. Philosophical Transactions of the Royal Society B, 374: 20180549.
• Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences 105: 6668-6672.
• Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts of recent climate warming. Nature 467: 704-706.
• Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569: 108-111.
• Araújo, M. B., Ferri‐Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). Heat freezes niche evolution. Ecology Letters 16: 1206-1219.
• Hoffmann, A. A., Chown, S. L., & Clusella‐Trullas, S. (2013). Upper thermal limits in terrestrial ectotherms: how constrained are they? Functional Ecology 27: 934-949.
• Rezende, E. L., Castañeda, L. E., & Santos, M. (2014). Tolerance landscapes in thermal ecology. Functional Ecology 28: 799-809.
• Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P., & Maclean, I. M. (2020). A method for computing hourly, historical, terrain‐corrected microclimate anywhere on Earth. Methods in Ecology and Evolution 11: 38-43.
Комментарии