Coding a Generative Adversarial Network (GAN) for MNIST [Python with Tensorflow]

preview_player
Показать описание
Generative Adversarial Network for mnist
Neural Network properties: [Generator]
Hidden Layer: 1
Hidden Nodes: 256
Learning Rate: 0.001
Training steps: 7000 per label
Activation function: Leaky_relu / Sigmoid
Backprob: Adam Optimizer

Neural Network properties: [Discriminator]
Hidden Layer: 1 Fully Connected layer / 2 Convolutional Layers
Hidden Nodes: 1568, 128
Learning Rate: 0.001
Training steps: 7000 per label
Activation function: Leaky_relu / Sigmoid
Backprob: Adam Optimizer

Рекомендации по теме
Комментарии
Автор

An explanation of what each section does, while typing code, would have been better

angelachikaebirim
Автор

Could you please upload video on DCGAN implementation using dataset insert from google drive

lalithavanik
visit shbcf.ru