filmov
tv
Integrals | Trigonometric Substitution (Example 1)
Показать описание
Follow us:
Some useful identities:
√(a^2−x^2 ) 1−sin^2θ=cos^2θ x=asinθ
√(a^2+x^2 ) 1+tan^2θ=sec^2θ x=atanθ
√(x^2−a^2 ) sec^2θ−1=tan^2θ x=asecθ
This requires inverse substitution.
Step 1: Set your x and find the derivative.
Step 2: Substitute your x and dx back into the original equation
Step 3: Use the appropriate trigonometric identity
Step 4: Simplify
Step 5: Integrate
Step 6: Convert back to original in terms of x
Trigonometric Substitution
Integration By Trigonometric Substitution
Integrals | Trigonometric Substitution (Example 1)
❖ Trigonometric Substitution ❖
Trigonometric Substitution Integral (Trig Sub Integral Example)
❖ Trigonometric Substitution - Example 2 ❖
Basic Trigonometric Substitution #shorts
Integrals | Trigonometric Substitution (Example 9)
INTEGRATION BY PARTS
Trig substitution integration: x=a*sinθ, calculus 2
Ex 2: Integration Using Trigonometric Substitution
Integrals | Trigonometric Substitution (Example 4)
Integration By Trig Substitution (Sine Example 3)
Integration By Trig Substitution (Tangent Example 2)
Integration By Trig Substitution (Secant Example 1)
Integrals | Trigonometric Substitution (Example 6)
Evaluate the Integral. Inverse Trigonometric Substitution. Example 42
Integrals | Trigonometric Substitution (Example 2)
Integral Involving Trig Substitution #calculus #integrationtricks #calculushelp #calculus2
Calculus 2: Trig Substitution Examples
Trigonometric Substitution | Calculus 2 Lesson 14 - JK Math
Trigonometric Substitution: Definite integral example
Trigonometric Substitution Examples | Calculus 2 - JK Math
Trigonometric Substitution
Комментарии