#203 (2-sqrt(x-3))/(x^2-49) [Demidovich]

preview_player
Показать описание
... Limits, Demidovich, Elementary tasks
Рекомендации по теме
Комментарии
Автор

...An alternative solution to your given limit applying difference of two squares: lim(x-->7)((2 - sqrt(x - 3))/(x^2 - 49)) [ (x^2 - 49) = (x - 7)(x + 7)] = lim(x-->7)((2 - sqrt(x - 3))/(x - 7)) times lim(x-->7)(1/(x + 7)) = (-1)lim(x-->7)((2 - sqrt(x - 3))/(4 - (x - 3))) times lim(x-->7)(1/(x + 7)) [(4 - (x - 3) ) = (2 - sqrt(x - 3))(2 + sqrt(x - 3))] = (-1)lim(x-->7)((2 - sqrt(x - 3))/((2 - sqrt(x - 3))(2 + sqrt(x - 3))) times lim(x-->7)(1/(x + 7)) = (-1)lim(x-->7)(1/(2 + sqrt(x - 3))) times lim(x-->7)(1/(x + 7)) = (-1)(1/4)(1/14) = -1/56... Take care, Jan-W

jan-willemreens