Can You Simplify Another Radical?

preview_player
Показать описание
🤩 Hello everyone, I'm very excited to bring you a new channel (aplusbi)
Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡

When you purchase something from here, I will make a small percentage of commission that helps me continue making videos for you.
If you are preparing for Math Competitions and Math Olympiads, then this is the page for you!
CHECK IT OUT!!! ❤️ ❤️ ❤️

If you need to post a picture of your solution or idea:
#radicals #radicalequations #algebra #calculus #differentialequations #polynomials #prealgebra #polynomialequations #numbertheory #diophantineequations #comparingnumbers #trigonometry #trigonometricequations #complexnumbers #math #mathcompetition #olympiad #matholympiad #mathematics #sybermath #aplusbi #shortsofsyber #iit #iitjee #iitjeepreparation #iitjeemaths #exponentialequations #exponents #exponential #exponent #systemsofequations #systems
#functionalequations #functions #function #maths #counting #sequencesandseries

#algebra #numbertheory #geometry #calculus #counting #mathcontests #mathcompetitions
via @YouTube @Apple @Desmos @NotabilityApp @googledocs @canva

PLAYLISTS 🎵 :

Рекомендации по теме
Комментарии
Автор

Interesting, instead of a constant 9 this could be applied for a more general case sqrt(a-sqrt(a^2 - b^2)) = sqrt((a+b)/2) - sqrt((a-b)/2)

petrileskinen
Автор

8:43 Note: these happen to be the same values, but note that x = (a-3)/2 is *not* a solution to the original problem. It's a so-called _extraneous_ solution, introduced by squaring the equation at 3:30 .

yurenchu
Автор

Apply nested radical formula: √(x±√y) = √[½(x+D)] ± √[½(x−D)], where D = √(x²−y).
D = √[a²−(a²−9)] = √9 = 3,
√[a−√(a²−9)] = √[½(a+3)] − √[½(a−3)].
It works every time x²−y is a perfect square:
√[3−√(9−a²)] = √[½(3+|a|)] − √[½(3−|a|)], since D = √[3²−(9−a²)] = |a|.

-wx--
Автор

You forgot early to address the negative square root of the nested surd. Could a complex solution give a real final result?

neuralwarp
Автор

If √(a-√b)=√c-√d then
a=c+d
b=4cd

Then a=c+b/4c <=> 4c^2-4ac+b=0 so c = (4a+√(16a^2-16b))/8= (a+√(a^2-b))/2 and d =(a-√(a^2-b))/2

This makes the radical in the problem:

√(a-√(a^2-9))=1/√2( 1/√2(√(a+3)-√(a-3))

dan-florinchereches
Автор

assuming |a| ≥ 3 :

a - √(a² - 9) =
= a - √((a+3)(a-3))
= a - √(a+3) * √(a-3)
= [ 2a - 2* √(a+3) * √(a-3) ]/2
= [ (a+3) + (a-3) - 2* √(a+3) * √(a-3) ]/2
... note: x² + y² - 2xy = (x-y)², here with x² = (a+3) and y² = (a-3) ...
= [ (√(a+3) - √(a-3))² ]/2
= [ (√(a+3) - √(a-3))/√2 ]²

and therefore,

√( a - √(a² - 9) ) =
= √( [ (√(a+3) - √(a-3))/√2 ]² )
= (√(a+3) - √(a-3)) / √2
= (√(a+3) - √(a-3)) * (√2)/2
= ( √(2a+6) - √(2a-6) ) / 2
= ½√(2a+6) - ½√(2a-6)

yurenchu