How to Use Calculator to Find Tangent in 3rd Quadrant

preview_player
Показать описание

Рекомендации по теме
Комментарии
Автор

Please not that I'm solving for X in the video. Not "?".

mrhtutoring
Автор

If cosine is 1/2, that easily tells me it's 60 degrees x 4

Sgth
Автор

The calculator does not always give you angles in the first quadrant when working with inverse trig. functions. There are also infinitely many angles which will work for this problem. Try -120 degrees.

surfer_guy
Автор

This is why you get a calculator with a 4-quadrant angle resolver function, called atan2(x, y) or arctan2(x, y).

That way you don't need to think about the quadrant of the angle, it keeps the information about the sign of both of its inputs, and gives you an angle all the way from -pi to +pi radians.

carultch
Автор

Ref ang = arc tan (y/x)
* x & y without signs

Then as both x, y -ve
Use req angle = 180 + ref ang

muhammademran
Автор

Question doesn't ask for x though. It only asks for the tangent of x. So it's just sqrt(3).

chessandmathguy
Автор

Thank you for not covering chalkboard with subtitles!

emihayashi
Автор

Why would you use a calculator for this problem? Isn't the answer of 4π/3 (or 240°) obvious?

awvz_
Автор

I think we we must divide 1/2 ÷ Sqrt3/2

nadamahmoud