If A, B, C are angles in a triangle, sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C# Trigonometry

preview_player
Показать описание
If A, B, C are angles in a triangle, then prove that
(i) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
(ii) sin 2A - sin 2B + sin 2C = 4 cos A sin B cos C
(iii) sin 2A + sin 2B - sin 2C = 4 cos A cos B sin C
#Trigonometry Telegu academy exercise 6(f)
# Transformation
Рекомендации по теме