filmov
tv
Python: multiple line plot with pandas and matplotlib || 09
Показать описание
In this video we use a multiple line plot to plot the Debt to GDP ratio of Eurozone countries, Japan, United Kingdom, United States by using pandas and matplotlib.
The data are taken from Dabrowski M., The Economic and Monetary Union: its past, present, and future, European Parliament, Monetary Dialogue January 2019.
## Eurozone countries plus Japan, UK, USA
country = ["Austria", "Belgium", "Cyprus", "Estonia", "Finland", "France", "Germany", "Greece", "Ireland", "Italy", "Latvia", "Lithuania", "Luxembourg", "Malta", "Netherlands", "Portugal", "Slovakia", "Slovenia", "Spain", "Japan", "UK", "USA"]
## Debt to GDP from 1999 to 2018
yr_1999 = [61.1, 114.4, 55.7, 6.0, 44.0, 60.5, 60.0, 98.9, 46.6, 109.7, 11.8, 28.1, 7.1, 69.5, 57.9, 51.0, 47.1, 22.0, 62.5, 131.1, 39.8, 53.2]
yr_2000 = [65.7, 108.8, 56.0, 5.1, 42.5, 58.9, 58.9, 104.9, 36.1, 105.1, 12.1, 23.5, 6.5, 64.2, 50.9, 50.3, 49.6, 29.0, 58.0, 137.9, 37.0, 53.2]
yr_2001 = [66.4, 107.6, 57.5, 4.8, 40.9, 58.3, 57.7, 107.1, 33.2, 104.7, 13.9, 22.9, 6.9, 70.1, 48.2, 53.4, 48.3, 28.5, 54.2, 146.8, 34.3, 53.2]
yr_2002 = [67.0, 104.7, 61.0, 5.7, 40.2, 60.3, 59.4, 104.9, 30.6, 101.9, 13.1, 22.1,6.8, 64.9, 47.5, 56.2, 42.9, 28.4, 51.3, 156.8, 34.4, 55.6]
yr_2003 = [64.9, 101.1, 63.0, 5.6, 42.7, 64.4, 63.1, 101.5, 29.9, 100.5, 13.9, 20.4, 6.8, 68.7, 48.7, 58.7, 41.6, 27.0, 47.6, 162.7, 35.6, 58.7]
yr_2004 = [64.8, 96.5, 64.7, 5.1, 42.6, 65.9, 64.8, 102.9, 28.2, 100.1, 13.8, 18.7, 7.3, 71.1, 49.1, 62.0, 40.6, 26.8, 45.3, 171.7, 38.6, 66.2]
yr_2005 = [68.3, 94.7, 64.0, 4.5, 39.9, 67.4, 67.0, 107.4, 26.1, 101.9, 11.2, 17.6, 7.4, 70.0, 48.5, 67.4, 34.1, 26.3, 42.3, 176.8, 39.8, 65.6]
yr_2006 = [67.0, 91.1, 59.0, 4.4, 38.1, 64.6, 66.5, 103.6, 23.6, 102.6, 9.2, 17.2, 7.8, 64.5, 44.1, 69.2, 31.0, 26.0, 38.9, 176.4, 40.7, 64.3]
yr_2007 = [64.7, 87.0, 53.1, 3.7, 34.0, 64.5, 63.7, 103.1, 23.9, 99.8, 7.2, 15.9,
7.7, 62.3, 42.0, 68.4, 30.1, 22.7, 35.5, 175.4, 41.7, 64.8]
yr_2008 = [68.4, 92.5, 44.1, 4.5, 32.7, 68.8, 65.2, 109.4, 42.4, 102.4, 16.2, 14.6,14.9, 62.6, 53.8, 71.7, 28.5, 21.6, 39.4, 183.4, 49.7, 73.8]
yr_2009 = [79.6, 99.5, 52.8, 7.0, 41.7, 83.0, 72.6, 126.7, 61.5, 112.5, 32.5, 29.0, 15.7, 67.6, 55.8, 83.6, 36.3, 34.5, 52.7, 201.0, 63.7, 86.9]
yr_2010 = [82.4, 99.7, 55.8, 6.6, 47.1, 85.3, 80.9, 146.3, 86.0, 115.4, 40.3, 36.2, 19.8, 67.5, 58.6, 90.5, 41.2, 38.2, 60.1, 207.9, 75.2, 95.5]
yr_2011 = [82.2, 102.6, 65.2, 6.1, 48.5, 87.8, 78.6, 180.6, 110.9, 116.5, 37.5, 37.2,18.7, 70.1, 60.8, 111.4, 43.7, 46.4, 69.5, 222.1, 80.8, 99.9]
yr_2012 = [81.7, 104.3, 79.2, 9.7, 53.9, 90.6, 79.8, 159.6, 119.9, 123.4, 36.7, 39.8, 21.7, 67.7, 65.5, 126.2, 52.2, 53.8, 85.7, 229.0, 84.1, 103.3]
yr_2013 = [81.0, 105.5, 102.1, 10.2, 56.5, 93.4, 77.5, 177.9, 119.8, 129.0, 35.8, 38.8, 23.7, 68.4, 67.0, 129.0, 54.7, 70.4, 95.5, 232.5, 85.2, 104.9]
yr_2014 = [83.8, 107.0, 107.5, 10.7, 60.2, 94.9, 74.6, 180.2, 104.3, 131.8, 38.5, 40.5, 22.7, 63.7, 67.1, 130.6, 53.5, 80.3, 100.4, 236.1, 87.0, 104.6]
yr_2015 = [84.3, 106.1, 107.5, 10.0, 63.5, 95.6, 70.9, 178.8, 76.9, 131.5, 34.9, 42.6,22.0, 58.6, 64.0, 128.8, 52.3, 82.6, 99.4, 231.3, 87.9, 104.8]
yr_2016 = [83.6, 106.0, 106.6, 9.4, 62.9, 96.6, 67.9, 183.5, 73.6, 132.0, 37.4, 40.1,20.8, 56.3, 61.3, 129.9, 51.8, 78.6, 99.0, 235.6, 87.9, 106.8]
yr_2017 = [78.6, 103.4, 97.5, 9.0, 61.3, 96.8, 63.9, 181.8, 68.6, 131.8, 36.3, 39.7, 23.0, 50.7, 56.5, 125.7, 50.9, 73.6, 98.4, 237.6, 87.5, 105.2]
yr_2018 = [74.2, 101.2, 112.3, 8.8, 60.5, 96.7, 59.8, 188.1, 66.6, 130.3, 35.0, 37.0, 22.8, 45.1, 53.1, 120.8, 49.2, 69.7, 97.2, 238.2, 87.4, 106.1]
The data are taken from Dabrowski M., The Economic and Monetary Union: its past, present, and future, European Parliament, Monetary Dialogue January 2019.
## Eurozone countries plus Japan, UK, USA
country = ["Austria", "Belgium", "Cyprus", "Estonia", "Finland", "France", "Germany", "Greece", "Ireland", "Italy", "Latvia", "Lithuania", "Luxembourg", "Malta", "Netherlands", "Portugal", "Slovakia", "Slovenia", "Spain", "Japan", "UK", "USA"]
## Debt to GDP from 1999 to 2018
yr_1999 = [61.1, 114.4, 55.7, 6.0, 44.0, 60.5, 60.0, 98.9, 46.6, 109.7, 11.8, 28.1, 7.1, 69.5, 57.9, 51.0, 47.1, 22.0, 62.5, 131.1, 39.8, 53.2]
yr_2000 = [65.7, 108.8, 56.0, 5.1, 42.5, 58.9, 58.9, 104.9, 36.1, 105.1, 12.1, 23.5, 6.5, 64.2, 50.9, 50.3, 49.6, 29.0, 58.0, 137.9, 37.0, 53.2]
yr_2001 = [66.4, 107.6, 57.5, 4.8, 40.9, 58.3, 57.7, 107.1, 33.2, 104.7, 13.9, 22.9, 6.9, 70.1, 48.2, 53.4, 48.3, 28.5, 54.2, 146.8, 34.3, 53.2]
yr_2002 = [67.0, 104.7, 61.0, 5.7, 40.2, 60.3, 59.4, 104.9, 30.6, 101.9, 13.1, 22.1,6.8, 64.9, 47.5, 56.2, 42.9, 28.4, 51.3, 156.8, 34.4, 55.6]
yr_2003 = [64.9, 101.1, 63.0, 5.6, 42.7, 64.4, 63.1, 101.5, 29.9, 100.5, 13.9, 20.4, 6.8, 68.7, 48.7, 58.7, 41.6, 27.0, 47.6, 162.7, 35.6, 58.7]
yr_2004 = [64.8, 96.5, 64.7, 5.1, 42.6, 65.9, 64.8, 102.9, 28.2, 100.1, 13.8, 18.7, 7.3, 71.1, 49.1, 62.0, 40.6, 26.8, 45.3, 171.7, 38.6, 66.2]
yr_2005 = [68.3, 94.7, 64.0, 4.5, 39.9, 67.4, 67.0, 107.4, 26.1, 101.9, 11.2, 17.6, 7.4, 70.0, 48.5, 67.4, 34.1, 26.3, 42.3, 176.8, 39.8, 65.6]
yr_2006 = [67.0, 91.1, 59.0, 4.4, 38.1, 64.6, 66.5, 103.6, 23.6, 102.6, 9.2, 17.2, 7.8, 64.5, 44.1, 69.2, 31.0, 26.0, 38.9, 176.4, 40.7, 64.3]
yr_2007 = [64.7, 87.0, 53.1, 3.7, 34.0, 64.5, 63.7, 103.1, 23.9, 99.8, 7.2, 15.9,
7.7, 62.3, 42.0, 68.4, 30.1, 22.7, 35.5, 175.4, 41.7, 64.8]
yr_2008 = [68.4, 92.5, 44.1, 4.5, 32.7, 68.8, 65.2, 109.4, 42.4, 102.4, 16.2, 14.6,14.9, 62.6, 53.8, 71.7, 28.5, 21.6, 39.4, 183.4, 49.7, 73.8]
yr_2009 = [79.6, 99.5, 52.8, 7.0, 41.7, 83.0, 72.6, 126.7, 61.5, 112.5, 32.5, 29.0, 15.7, 67.6, 55.8, 83.6, 36.3, 34.5, 52.7, 201.0, 63.7, 86.9]
yr_2010 = [82.4, 99.7, 55.8, 6.6, 47.1, 85.3, 80.9, 146.3, 86.0, 115.4, 40.3, 36.2, 19.8, 67.5, 58.6, 90.5, 41.2, 38.2, 60.1, 207.9, 75.2, 95.5]
yr_2011 = [82.2, 102.6, 65.2, 6.1, 48.5, 87.8, 78.6, 180.6, 110.9, 116.5, 37.5, 37.2,18.7, 70.1, 60.8, 111.4, 43.7, 46.4, 69.5, 222.1, 80.8, 99.9]
yr_2012 = [81.7, 104.3, 79.2, 9.7, 53.9, 90.6, 79.8, 159.6, 119.9, 123.4, 36.7, 39.8, 21.7, 67.7, 65.5, 126.2, 52.2, 53.8, 85.7, 229.0, 84.1, 103.3]
yr_2013 = [81.0, 105.5, 102.1, 10.2, 56.5, 93.4, 77.5, 177.9, 119.8, 129.0, 35.8, 38.8, 23.7, 68.4, 67.0, 129.0, 54.7, 70.4, 95.5, 232.5, 85.2, 104.9]
yr_2014 = [83.8, 107.0, 107.5, 10.7, 60.2, 94.9, 74.6, 180.2, 104.3, 131.8, 38.5, 40.5, 22.7, 63.7, 67.1, 130.6, 53.5, 80.3, 100.4, 236.1, 87.0, 104.6]
yr_2015 = [84.3, 106.1, 107.5, 10.0, 63.5, 95.6, 70.9, 178.8, 76.9, 131.5, 34.9, 42.6,22.0, 58.6, 64.0, 128.8, 52.3, 82.6, 99.4, 231.3, 87.9, 104.8]
yr_2016 = [83.6, 106.0, 106.6, 9.4, 62.9, 96.6, 67.9, 183.5, 73.6, 132.0, 37.4, 40.1,20.8, 56.3, 61.3, 129.9, 51.8, 78.6, 99.0, 235.6, 87.9, 106.8]
yr_2017 = [78.6, 103.4, 97.5, 9.0, 61.3, 96.8, 63.9, 181.8, 68.6, 131.8, 36.3, 39.7, 23.0, 50.7, 56.5, 125.7, 50.9, 73.6, 98.4, 237.6, 87.5, 105.2]
yr_2018 = [74.2, 101.2, 112.3, 8.8, 60.5, 96.7, 59.8, 188.1, 66.6, 130.3, 35.0, 37.0, 22.8, 45.1, 53.1, 120.8, 49.2, 69.7, 97.2, 238.2, 87.4, 106.1]