Stanford Seminar - Towards Safe and Efficient Learning in the Physical World

preview_player
Показать описание
April 5, 2024
Andreas Krause of ETH Zurich

How can we enable agents to efficiently and safely learn online, from interaction with the real world? I will first present safe Bayesian optimization, where we quantify uncertainty in the unknown objective and constraints, and, under some regularity conditions, can guarantee both safety and convergence to a natural notion of reachable optimum. I will then consider Bayesian model-based deep reinforcement learning, where we use the epistemic uncertainty in the world model to guide exploration while ensuring safety. Lastly I will discuss how we can meta-learn flexible probabilistic models from related tasks and simulations, and demonstrate our approaches on real-world applications, such as robotics tasks and tuning the SwissFEL Free Electron Laser.

Рекомендации по теме