filmov
tv
CppCon 2019: Hartmut Kaiser “Asynchronous Programming in Modern C++”
Показать описание
—
—
—
With the advent of modern computer architectures characterized by -- amongst other things -- many-core nodes, deep and complex memory hierarchies, heterogeneous subsystems, and power-aware components, it is becoming increasingly difficult to achieve best possible application scalability and satisfactory parallel efficiency. The community is experimenting with new programming models that rely on finer-grain parallelism, and flexible and lightweight synchronization, combined with work-queue-based, message-driven computation. The recently growing interest in the C++ programming language in industry and in the wider community increases the demand for libraries implementing those programming models for the language.
In this talk, we present a new asynchronous C++ parallel programming model that is built around lightweight tasks and mechanisms to orchestrate massively parallel (and -- if needed -- distributed) execution. This model uses the concept of (Standard C++) futures to make data dependencies explicit, employs explicit and implicit asynchrony to hide latencies and to improve utilization, and manages finer-grain parallelism with a work-stealing scheduling system enabling automatic load balancing of tasks.
We have implemented such a model as a C++ library exposing a higher-level parallelism API that is fully conforming to the existing C++11/14/17 standards and is aligned with the ongoing standardization work. This API and programming model has shown to enable writing highly efficient parallel applications for heterogeneous resources with excellent performance and scaling characteristics.
—
Hartmut Kaiser
CCT/LSU
STE||AR Group
Hartmut is a member of the faculty at the CS department at Louisiana State University (LSU) and a senior research scientist at LSU's Center for Computation and Technology (CCT). He received his doctorate from the Technical University of Chemnitz (Germany) in 1988. He is probably best known through his involvement in open source software projects, mainly as the author of several C++ libraries he has contributed to Boost, which are in use by thousands of developers worldwide. His current research is focused on leading the STE||AR group at CCT working on the practical design and implementation of future execution models and programming methods. His research interests are focused on the complex interaction of compiler technologies, runtime systems, active libraries, and modern system's architectures. His goal is to enable the creation of a new generation of scientific applications in powerful, though complex environments, such as high performance computing, distributed and grid computing, spatial information systems, and compiler technologies.
—
*-----*
*-----*
—
—
With the advent of modern computer architectures characterized by -- amongst other things -- many-core nodes, deep and complex memory hierarchies, heterogeneous subsystems, and power-aware components, it is becoming increasingly difficult to achieve best possible application scalability and satisfactory parallel efficiency. The community is experimenting with new programming models that rely on finer-grain parallelism, and flexible and lightweight synchronization, combined with work-queue-based, message-driven computation. The recently growing interest in the C++ programming language in industry and in the wider community increases the demand for libraries implementing those programming models for the language.
In this talk, we present a new asynchronous C++ parallel programming model that is built around lightweight tasks and mechanisms to orchestrate massively parallel (and -- if needed -- distributed) execution. This model uses the concept of (Standard C++) futures to make data dependencies explicit, employs explicit and implicit asynchrony to hide latencies and to improve utilization, and manages finer-grain parallelism with a work-stealing scheduling system enabling automatic load balancing of tasks.
We have implemented such a model as a C++ library exposing a higher-level parallelism API that is fully conforming to the existing C++11/14/17 standards and is aligned with the ongoing standardization work. This API and programming model has shown to enable writing highly efficient parallel applications for heterogeneous resources with excellent performance and scaling characteristics.
—
Hartmut Kaiser
CCT/LSU
STE||AR Group
Hartmut is a member of the faculty at the CS department at Louisiana State University (LSU) and a senior research scientist at LSU's Center for Computation and Technology (CCT). He received his doctorate from the Technical University of Chemnitz (Germany) in 1988. He is probably best known through his involvement in open source software projects, mainly as the author of several C++ libraries he has contributed to Boost, which are in use by thousands of developers worldwide. His current research is focused on leading the STE||AR group at CCT working on the practical design and implementation of future execution models and programming methods. His research interests are focused on the complex interaction of compiler technologies, runtime systems, active libraries, and modern system's architectures. His goal is to enable the creation of a new generation of scientific applications in powerful, though complex environments, such as high performance computing, distributed and grid computing, spatial information systems, and compiler technologies.
—
*-----*
*-----*
Комментарии