How I Built the Fastest FULLY LOCAL RAG PDF Chatbot Using GroqChat|Chainlit|Ollama #ai #llm

preview_player
Показать описание
Explore lightning-fast LLM inference with Groq's revolutionary LPU Inference Engine, setting new standards for GenAI inference speed. Witness Groq's capabilities in building a dynamic PDF document chatbot and accelerating AI applications in real-time. Groq's Mixtral 8x7b offers unparalleled performance, particularly in sequential AI language tasks. In this video, we'll showcase the construction of a responsive chat PDF document using Groqchat, ChainLit, Ollama, and LangChain. Don't miss out on this exploration of Groq's game-changing technology and the power of nomic-embed-text from Ollama, boasting an 8192 token context window for superior embedding performance. Subscribe now to unlock the full potential of AI inference.

#ai #langchain #llm #grog #opensource #localllms #local #generativeai
#mixtral #fastest #inference #speed

Рекомендации по теме
Комментарии
Автор

Great video many thanks indeed very fast ;-)

dldsijx
Автор

Thank you so much, Can you tell how to store the conversation chat history in a database like redis so i can reduce the costs of repetitive queries

tfwtduu
Автор

It is not bad. I just messed up my Visual Studio code env - have to uninstall py scripts globally I think after a recent Ollama install and rag tut. Good tutorial. I can not figure out collab, only visual studio code.

aimattant
Автор

Thank you so so much! This is awesome! :)
Just one question: is it possibile to add a prompt to the script in order to modify, for example, the chat "behaviour"?

ThaiosX
Автор

Is it possible to deploy this on Azure for Aws ??

TechQuanta-rqoc
Автор

It would have helped if an intro was given on hw requirements, whether this can run on CPU, RAM??? HDD??

resourceserp
Автор

Can you add on to this - with internal file shares, document analysis, voice, uploading more than one file, etc.

aimattant
Автор

what if I want to process multiple PDFs at a time and chat with them?
provide a code for it or a detailed explanation through video if possible.

yashhalwai
Автор

is there any way around of me having a upload file window but user can chat normal way until the file is uploaded and then ask questions from that

dhmkkk
Автор

I keep getting a "Could not connect to server" error for slightly bigger files (I uploaded a 5MB file). Is there a workaround for this?

nithyarajkumar
Автор

How can i use it on colab ? Like using ollama embedding on colab is a big task

dakshverma
Автор

Please create with using local llm model using ollama

mrrohitjadhav
Автор

can we add any doc, eg
, doc,csv ppt etc

mrpsycho
Автор

please can you make the response streaming ?

mohamedkeddache
Автор

🎯 Key Takeaways for quick navigation:

00:00 *🚀 构建快速本地 PDF 问答聊天机器人的介绍*
- 本视频将展示如何使用 GroqChat、Chainlit 和 Ollama 构建针对 PDF 文档的问答聊天机器人
- 该应用程序将具有内存功能, 可以进行上下文理解
- 使用了 nomic text embeddings 和 LLMChain 等技术
03:50 *🧰 设置开发环境和安装依赖包*
- 创建新的 Python 虚拟环境
- 安装所需包, 包括 langchain、grooama、chromadb 等
- 加载环境变量, 如 GroAPI 密钥
06:07 *📝 代码逻辑解析*
- 导入相关库, 如 PyPDF2、nomic text embeddings
- 使用 ChromaDB 作为向量存储
- 初始化 GroChat 并设置模型和参数
- 处理 PDF 文件, 分块并创建元数据
11:00 *🧠 构建问答链路及内存*
- 创建向量存储和文本嵌入
- 初始化会话历史和内存
- 构建检索链并设置返回源文档
- 准备就绪, 可开始对话
13:59 *💬 执行对话和问答*
- 获取用户输入的问题
- 调用检索链获取答案和源文档
- 对答案添加源文档引用
- 返回结果, 包括答案和引用源

Made with HARPA AI

Ahwu_AIClass